Skip to main content

Prime Editing for Precise Genome Engineering in Drosophila

  • Protocol
  • First Online:
Drosophila

Abstract

Editing the Drosophila genome is incredibly useful for gene functional analysis. However, compared to gene knockouts, precise gene editing is difficult to achieve. Prime editing, a recently described CRISPR/Cas9-based technique, has the potential to make precise editing simpler and faster, and produce less errors than traditional methods. Initially described in mammalian cells, prime editing is functional in Drosophila somatic and germ cells. Here, we outline steps to design, generate, and express prime editing components in transgenic flies. Furthermore, we highlight a crossing scheme to produce edited fly stocks in less than 3 months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157. https://doi.org/10.1038/s41586-019-1711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scholefield J, Harrison PT (2021) Prime editing – an update on the field. Gene Ther 28(7):396–401. https://doi.org/10.1038/s41434-021-00263-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim DY, Moon SB, Ko JH, Kim YS, Kim D (2020) Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res 48(18):10576–10589. https://doi.org/10.1093/nar/gkaa764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jin S, Lin Q, Luo Y, Zhu Z, Liu G, Li Y, Chen K, Qiu JL, Gao C (2021) Genome-wide specificity of prime editors in plants. Nat Biotechnol 39(10):1292–1299. https://doi.org/10.1038/s41587-021-00891-x

    Article  CAS  PubMed  Google Scholar 

  5. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19(12):770–788. https://doi.org/10.1038/s41576-018-0059-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, Leith A, Daza RM, Martin B, Shendure J (2021) Precise genomic deletions using paired prime editing. bioRxiv 40(2):218–226. https://doi.org/10.1101/2020.12.30.424891

  7. Hsu JY, Grunewald J, Szalay R, Shih J, Anzalone AV, Lam KC, Shen MW, Petri K, Liu DR, Joung JK, Pinello L (2021) PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun 12(1):1034. https://doi.org/10.1038/s41467-021-21337-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bosch JA, Birchak G, Perrimon N (2021) Precise genome engineering in Drosophila using prime editing. Proc Natl Acad Sci U S A 118(1):e2021996118. https://doi.org/10.1073/pnas.2021996118

    Article  CAS  PubMed  Google Scholar 

  9. Kim HK, Yu G, Park J, Min S, Lee S, Yoon S, Kim HH (2021) Predicting the efficiency of prime editing guide RNAs in human cells. Nat Biotechnol 39(2):198–206. https://doi.org/10.1038/s41587-020-0677-y

    Article  CAS  PubMed  Google Scholar 

  10. Lin Q, Jin S, Zong Y, Yu H, Zhu Z, Liu G, Kou L, Wang Y, Qiu JL, Li J, Gao C (2021) High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 39(8):923–927. https://doi.org/10.1038/s41587-021-00868-w

    Article  CAS  PubMed  Google Scholar 

  11. Hurd TR, Liang FX, Lehmann R (2015) Curly encodes dual oxidase, which acts with Heme peroxidase curly Su to shape the adult drosophila wing. PLoS Genet 11(11):e1005625. https://doi.org/10.1371/journal.pgen.1005625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in drosophila. Proc Natl Acad Sci U S A 111(29):E2967–E2976. https://doi.org/10.1073/pnas.1405500111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Port F, Bullock SL (2016) Augmenting CRISPR applications in drosophila with tRNA-flanked sgRNAs. Nat Methods 13(10):852–854. https://doi.org/10.1038/nmeth.3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, Cole MA, Liu DR, Joung JK, Bauer DE, Pinello L (2019) CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol 37(3):224–226. https://doi.org/10.1038/s41587-019-0032-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kweon J, Yoon JK, Jang AH, Shin HR, See JE, Jang G, Kim JI, Kim Y (2021) Engineered prime editors with PAM flexibility. Mol Ther 29(6):2001–2007. https://doi.org/10.1016/j.ymthe.2021.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Housden BE, Valvezan AJ, Kelley C, Sopko R, Hu Y, Roesel C, Lin S, Buckner M, Tao R, Yilmazel B, Mohr SE, Manning BD, Perrimon N (2015) Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal 8(393):rs9. https://doi.org/10.1126/scisignal.aab3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O’Connor-Giles KM (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196(4):961–971. https://doi.org/10.1534/genetics.113.160713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson MV, Haldrup J, Thomsen EA, Wolff JH, Mikkelsen JG (2021) pegIT – a web-based design tool for prime editing. Nucleic Acids Res 49(W1):W505–W509. https://doi.org/10.1093/nar/gkab427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chow RD, Chen JS, Shen J, Chen S (2021) A web tool for the design of prime-editing guide RNAs. Nat Biomed Eng 5(2):190–194. https://doi.org/10.1038/s41551-020-00622-8

    Article  CAS  PubMed  Google Scholar 

  21. Siegner SM, Karasu ME, Schroder MS, Kontarakis Z, Corn JE (2021) PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics 22(1):101. https://doi.org/10.1186/s12859-021-04034-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang GH, Jeong YK, Habib O, Hong SA, Lim K, Kim JS, Bae S (2021) PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Res 49(W1):W499–W504. https://doi.org/10.1093/nar/gkab319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adikusuma F, Lushington C, Arudkumar J, Godahewa G, Chey YCJ, Gierus L, Pilitz S, Reti D, Wilson LOW, Bauer DC, Thomas PQ (2021) Optimized nickase- and nuclease-based prime editing in human and mouse cells. Nucleic Acids Res 49(18):10785–10795

    Article  CAS  Google Scholar 

  24. Morris JA, Rahman JA, Guo X, Sanjana NE (2020) Automated design of CRISPR prime editors for thousands of human pathogenic variants. bioRxiv. https://doi.org/10.1101/2020.05.07.083444

  25. Standage-Beier K, Tekel SJ, Brafman DA, Wang X (2021) Prime editing guide RNA design automation using PINE-CONE. ACS Synth Biol 10(2):422–427. https://doi.org/10.1021/acssynbio.0c00445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Chen J, Tsai SQ, Cheng Y (2021) Easy-prime: a machine learning-based prime editor design tool. Genome Biol 22(1):235. https://doi.org/10.1186/s13059-021-02458-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Gabriel Birchak for discussions and S2R+ work, Rich Binari for general lab assistance and help with fly, the TRiP and Drosophila RNAi Screening Center for help generating transgenic flies, Ram Viswanatha for general discussions, Gillian Millburn for discussions on pegRNA transgene nomenclature, Cathryn Murphy for general lab assistance, Cooper Cavers for help isolating transgenic flies, Jorden Rabasco for help with molecular cloning, Andrew Anzalone for advice with synthetic pegRNAs, and Ben Ewen-Campen, Jonathan Zirin, and Thai LaGraff for cloning help. J.A.B. was supported by the Damon Runyon Foundation (DRG-2258-16) and a “Training Grant in Genetics” T32 Ruth Kirschstein-National Research Service Award institutional research training grant funded through the NIH/National Institute of General Medical Sciences (T32GM007748). This work was also supported by NIH Grant P41GM132087. N.P. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Perrimon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bosch, J.A., Perrimon, N. (2022). Prime Editing for Precise Genome Engineering in Drosophila. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 2540. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2541-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2541-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2540-8

  • Online ISBN: 978-1-0716-2541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics