Skip to main content

Genomic Selection Using Bayesian Methods: Models, Software, and Application

  • Protocol
  • First Online:
Genomics of Cereal Crops

Abstract

In crop improvement programs, genomic selection (GS) deals with the selection of superior genotypes to enhance the genetic gain for the trait of economic importance with reduced breeding cycle. Even for the complex quantitative traits that are governed by several genes with each exhibiting small effects, GS has been shown to be a promising tool in contrary to the marker assisted selection (MAS) useful for the traits controlled by few major genes. With the advent of high-throughput genotyping platforms such as SNP (single-nucleotide polymorphism), GS offers ample opportunities to develop marker-based model for the genetic evaluation. There are several factors, that is, heritability of the trait, effective population size, linkage disequilibrium (LD) of markers with quantitative trait loci (QTL) play crucial role in determining the genomic selection accuracy. Among different factors affecting the GS accuracy, choosing an appropriate GS model is an important one. In this chapter, we focus on different variants of Bayesian regression model used for genomic selection. The models and software for the genomic selection using different Bayesian methods are discussed. Besides, genomic selection accuracy for the yield trait of wheat is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    Article  CAS  Google Scholar 

  2. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12

    Article  CAS  Google Scholar 

  3. Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221

    Article  Google Scholar 

  4. Poland JA, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5(3):103–113

    CAS  Google Scholar 

  5. Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136(2):245–257

    Article  Google Scholar 

  6. Shi S, Li X, Fang L, Liu A, Su G, Zhang Y, Luobu B, Ding X, Zhang S (2021) Genomic prediction using bayesian regression models with global–local prior. Front Genet 12:426

    Google Scholar 

  7. Gianola D, de Los CG, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183(1):347–363

    Article  Google Scholar 

  8. Habier D, Fernando RL, Dekkers JC (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177(4):2389–2397

    Article  CAS  Google Scholar 

  9. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423

    Article  CAS  Google Scholar 

  10. Piepho HP (2009) Ridge regression and extensions for genome wide selection in maize. Crop Sci 49(4):1165–1176

    Article  Google Scholar 

  11. Wang J, Zhou Z, Zhang Z, Li H, Liu D, Zhang Q, Bradbury PJ, Buckler ES, Zhang Z (2018) Expanding the BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex traits. Heredity 121(6):648–662

    Article  CAS  Google Scholar 

  12. Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection. Genetics 201(2):759–768

    Article  CAS  Google Scholar 

  13. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12(1):1–2

    Article  Google Scholar 

  14. de Los CG, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193(2):327–345

    Article  Google Scholar 

  15. Park T, Casella G (2008) The bayesian lasso. J Am Stat Assoc 103(482):681–686

    Article  CAS  Google Scholar 

  16. González-Camacho JM, de Los CG, Pérez P, Gianola D, Cairns JE, Mahuku G, Babu R, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125(4):759–771

    Article  Google Scholar 

  17. Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179(2):1045–1055

    Article  CAS  Google Scholar 

  18. Pong-Wong R, Woolliams J (2014) Bayes U: a genomic prediction method based on the horseshoe prior. In: Proceedings, 10th world congress of genetics applied to livestock production, Vancouver

    Google Scholar 

  19. Carvalho CM, Polson NG, Scott JG (2010) The horseshoe estimator for sparse signals. Biometrika 97(2):465–480

    Article  Google Scholar 

  20. Piironen J, Vehtari A (2017) Sparsity information and regularization in the horseshoe and other shrinkage priors. Electron J Stat 11(2):5018–5051

    Article  Google Scholar 

  21. R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  22. Pérez P, de los Campos G (2014) BGLR: a statistical package for whole genome regression and prediction. Genetics 198(2):483–495

    Article  Google Scholar 

  23. Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112(1):48–60

    Article  CAS  Google Scholar 

  24. Sorensen D, Gianola D, Gianola D (2002) Likelihood, Bayesian and MCMC methods in quantitative genetics. Springer, New York

    Book  Google Scholar 

  25. Kizilkaya K, Fernando RL, Garrick DJ (2010) Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J Anim Sci 88(2):544–551

    Article  CAS  Google Scholar 

  26. Sun X, Habier D, Fernando RL, Garrick DJ, Dekkers JC (2011) Genomic breeding value prediction and QTL mapping of QTLMAS2010 data using Bayesian methods. BMC Proc 5(3):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meher, P.K., Kumar, A., Pradhan, S.K. (2022). Genomic Selection Using Bayesian Methods: Models, Software, and Application. In: Wani, S.H., Kumar, A. (eds) Genomics of Cereal Crops. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2533-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2533-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2532-3

  • Online ISBN: 978-1-0716-2533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics