Skip to main content

Identification and Quantification of Microexons Using Bulk and Single-Cell RNA-Seq Data

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

Abstract

The analysis of RNA-seq has greatly improved the characterization and understanding of the transcriptome. In particular, RNA-seq experiments have extended catalogs of alternative splicing events. However, the analysis of RNAs-seq data for detection and quantification of microexons, extremely short exons of length up to 30 nt, require specialized computational workflows. Here, we describe MicroExonator, a reproducible computational workflow for microexon splicing analysis using bulk or single-cell RNA-seq data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165

    Article  CAS  Google Scholar 

  2. Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236–243

    Article  CAS  Google Scholar 

  3. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  Google Scholar 

  4. Vuong CK, Black DL, Zheng S (2016) The neurogenetics of alternative splicing. Nat Rev Neurosci 17:265–281

    Article  CAS  Google Scholar 

  5. Tapial J, Ha KCH, Sterne-Weiler T, Gohr A, Braunschweig U, Hermoso-Pulido A, Quesnel-Vallières M, Permanyer J, Sodaei R, Marquez Y, Cozzuto L, Wang X, Gómez-Velázquez M, Rayon T, Manzanares M, Ponomarenko J, Blencowe BJ, Irimia M (2017) An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 27:1759–1768

    Article  CAS  Google Scholar 

  6. Ustianenko D, Weyn-Vanhentenryck SM, Zhang C (2017) Microexons: discovery, regulation, and function. Wiley Interdiscip Rev RNA 8. https://doi.org/10.1002/wrna.1418

  7. Curry-Hyde A, Chen BJ, Mills JD, Janitz M (2018) Microexons: novel regulators of the transcriptome. J Hum Transcript 2:1–6

    Article  Google Scholar 

  8. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, Quesnel-Vallières M, Tapial J, Raj B, O’Hanlon D, Barrios-Rodiles M, Sternberg MJE, Cordes SP, Roth FP, Wrana JL, Geschwind DH, Blencowe BJ (2014) A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159:1511–1523

    Article  CAS  Google Scholar 

  9. Li YI, Sanchez-Pulido L, Haerty W, Ponting CP (2015) RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Res 25:1–13

    Article  Google Scholar 

  10. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo M-L (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960

    Article  CAS  Google Scholar 

  11. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  Google Scholar 

  12. Haas BJ, Zody MC (2010) Advancing RNA-Seq analysis. Nat Biotechnol 28:421–423

    Article  CAS  Google Scholar 

  13. Parada GE, Munita R, Georgakopoulos-Soares I, Fernandes HJR, Kedlian VR, Metzakopian E, Andres ME, Miska EA, Hemberg M (2021) MicroExonator enables systematic discovery and quantification of microexons across mouse embryonic development. Genome Biol 22:43

    Article  CAS  Google Scholar 

  14. Köster J, Rahmann S (2012) Snakemake--a scalable bioinformatics workflow engine. Bioinformatics 28:2520–2522

    Article  Google Scholar 

  15. Sterne-Weiler T, Weatheritt RJ, Best AJ, Ha KCH, Blencowe BJ (2018) Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Mol Cell 72:187–200.e6

    Article  CAS  Google Scholar 

  16. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J, Bioconda Team (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476

    Article  Google Scholar 

  17. Petković D (2017) SQL/JSON standard: properties and deficiencies. Datenbank-Spektrum 17:277–287

    Article  Google Scholar 

  18. Ben-Kiki O, Evans C, Ingerson B (2009) Yaml ain’t markup language (yaml™) version 1.1. Working Draft 2008-05 11

    Google Scholar 

  19. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  20. Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 34:3955–3967

    Article  CAS  Google Scholar 

  21. Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22:2008–2017

    Article  CAS  Google Scholar 

  22. Shen S, Park JW, Lu Z-X, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y (2014) rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A 111:E5593–E5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a core grant from the Wellcome Trust. We thank Dr. John Calarco and Dr. Gonzalo Riadi for useful comments over this chapter and Camilo Fuentes Beals for software testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hemberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parada, G.E., Hemberg, M. (2022). Identification and Quantification of Microexons Using Bulk and Single-Cell RNA-Seq Data. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics