Skip to main content

Assessment of Macro- and Microheterogeneity of Monoclonal Antibodies Using Capillary Zone Electrophoresis Hyphenated with Mass Spectrometry

  • Protocol
  • First Online:
Capillary Electrophoresis-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2531))

  • 624 Accesses

Abstract

This chapter focuses on the application of capillary zone electrophoresis hyphenated with mass spectrometry (CZE-MS) for the characterization of monoclonal antibodies (mAbs). mAbs are complex molecules comprising different glycoforms and many other posttranslational modifications. In addition to this inherent microheterogeneity, misassembling of antibodies can take place during production contributing to their macroheterogeneity. CZE-MS is a versatile and powerful technique which has demonstrated high potential for the assessment of both micro- and macroheterogeneity of mAbs. In this chapter, technical and practical considerations for the characterization of mAbs by CZE-MS are described. CE-MS interfacing, capillary coatings for the prevention of mAb adsorption, and sample preparation considerations are covered in detail. The assessment of the macro- and microheterogeneity is discussed and exemplified through three different approaches involving analysis of intact, enzymatically digested, and reduced antibodies. The examples also illustrate the use of two commercially available interfacing techniques (i.e., sheath liquid and sheathless) as well as different types of capillary coatings (positively charged and neutral coatings).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23(9):1073–1078

    Article  CAS  Google Scholar 

  2. Kaplon H, Reichert JM (2019) Antibodies to watch in 2019. MAbs 11(2):219–238

    Article  CAS  Google Scholar 

  3. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol 54(2):407–419

    CAS  PubMed  Google Scholar 

  4. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233

    Article  CAS  Google Scholar 

  5. Liu H, Ponniah G, Zhang H-M, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Cheng G, Kita AZ, Andrien B (2014) In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs 6(5):1145–1154

    Article  Google Scholar 

  6. Gstottner C, Reusch D, Haberger M, Dragan I, Van Veelen P, Kilgour DPA, Tsybin YO, van der Burgt YEM, Wuhrer M, Nicolardi S (2020) Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh-resolution MALDI FT-ICR mass spectrometry. MAbs 12(1):1682403

    Article  Google Scholar 

  7. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622

    Article  CAS  Google Scholar 

  8. Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325–1334

    Article  CAS  Google Scholar 

  9. Mouchahoir T, Schiel JE (2018) Development of an LC-MS/MS peptide mapping protocol for the NISTmAb. Anal Bioanal Chem 410(8):2111–2126

    Article  CAS  Google Scholar 

  10. Dick LW, Mahon D, Qiu D, Cheng K-C (2009) Peptide mapping of therapeutic monoclonal antibodies: improvements for increased speed and fewer artifacts. J Chromatogr B 877(3):230–236

    Article  CAS  Google Scholar 

  11. Haselberg R, De Vijlder T, Heukers R, Smit MJ, Romijn EP, Somsen GW, Dominguez-Vega E (2018) Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Anal Chim Acta 1044:181–190

    Article  CAS  Google Scholar 

  12. Haberger M, Leiss M, Heidenreich AK, Pester O, Hafenmair G, Hook M, Bonnington L, Wegele H, Haindl M, Reusch D, Bulau P (2016) Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. Mabs 8(2):331–339

    Article  CAS  Google Scholar 

  13. Turner A, Yandrofski K, Telikepalli S, King J, Heckert A, Filliben J, Ripple D, Schiel JE (2018) Development of orthogonal NISTmAb size heterogeneity control methods. Anal Bioanal Chem 410(8):2095–2110

    Article  CAS  Google Scholar 

  14. Woods RJ, Xie MH, Von Kreudenstein TS, Ng GY, Dixit SB (2013) LC-MS characterization and purity assessment of a prototype bispecific antibody. MAbs 5(5):711–722

    Article  Google Scholar 

  15. Ding W, Qiu D, Bolgar MS, Miller SA (2018) Improving mass spectral quality of monoclonal antibody middle-up LC-MS analysis by shifting the protein charge state distribution. Anal Chem 90(3):1560–1565

    Article  CAS  Google Scholar 

  16. Sokolowska I, Mo J, Dong J, Lewis MJ, Hu P (2017) Subunit mass analysis for monitoring antibody oxidation. Mabs 9(3):498–505

    Article  CAS  Google Scholar 

  17. Wang C, Vemulapalli B, Cao M, Gadre D, Wang J, Hunter A, Wang X, Liu D (2018) A systematic approach for analysis and characterization of mispairing in bispecific antibodies with asymmetric architecture. Mabs 10(8):1226–1235

    Article  CAS  Google Scholar 

  18. D’Atri V, Fekete S, Beck A, Lauber M, Guillarme D (2017) Hydrophilic interaction chromatography hyphenated with mass spectrometry: a powerful analytical tool for the comparison of originator and biosimilar therapeutic monoclonal antibodies at the middle-up level of analysis. Anal Chem 89(3):2086–2092

    Article  Google Scholar 

  19. Domínguez-Vega E, Haselberg R, Somsen GW (2016) Capillary zone electrophoresis–mass spectrometry of intact proteins. In: Tran NT, Taverna M (eds) Capillary electrophoresis of proteins and peptides: methods and protocols. Springer, New York, pp 25–41

    Chapter  Google Scholar 

  20. Bertoletti L, Schappler J, Colombo R, Rudaz S, Haselberg R, Domínguez-Vega E, Raimondi S, Somsen GW, De Lorenzi E (2016) Evaluation of capillary electrophoresis-mass spectrometry for the analysis of the conformational heterogeneity of intact proteins using beta2-microglobulin as model compound. Anal Chim Acta 945:102–109

    Article  CAS  Google Scholar 

  21. Patrick JS, Lagu AL (2001) Review applications of capillary electrophoresis to the analysis of biotechnology-derived therapeutic proteins. Electrophoresis 22(19):4179–4196

    Article  CAS  Google Scholar 

  22. Dominguez-Vega E, De Vijlder T, Romijn EP, Somsen GW (2017) Capillary electrophoresis-tandem mass spectrometry as a highly selective tool for the compositional and site-specific assessment of multiple peptide-deamidation. Anal Chim Acta 982:122–130

    Article  CAS  Google Scholar 

  23. Maxwell EJ, Chen DD (2008) Twenty years of interface development for capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chim Acta 627(1):25–33

    Article  CAS  Google Scholar 

  24. Ramautar R, Heemskerk AA, Hensbergen PJ, Deelder AM, Busnel JM, Mayboroda OA (2012) CE-MS for proteomics: advances in interface development and application. J Proteome 75(13):3814–3828

    Article  CAS  Google Scholar 

  25. Fanali S, D'Orazio G, Foret F, Kleparnik K, Aturki Z (2006) On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis 27(23):4666–4673

    Article  CAS  Google Scholar 

  26. Moini M (2007) Simplifying CE-MS operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. Anal Chem 79(11):4241–4246

    Article  CAS  Google Scholar 

  27. Haselberg R, Ratnayake CK, de Jong GJ, Somsen GW (2010) Performance of a sheathless porous tip sprayer for capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins. J Chromatogr A 1217(48):7605–7611

    Article  CAS  Google Scholar 

  28. Michalikova K, Dominguez-Vega E, Somsen GW, Haselberg R (2019) Middle-up characterization of the monoclonal antibody infliximab by capillary zone electrophoresis-mass spectrometry. LC GC Eur 32(3):130–137

    CAS  Google Scholar 

  29. Belov AM, Zang L, Sebastiano R, Santos MR, Bush DR, Karger BL, Ivanov AR (2018) Complementary middle-down and intact monoclonal antibody proteoform characterization by capillary zone electrophoresis—mass spectrometry. Electrophoresis 39(16):2069–2082

    Article  CAS  Google Scholar 

  30. Espinosa-de la Garza CE, Salazar-Flores RD, Perez NO, Flores-Ortiz LF, Medina-Rivero E (2017) Capillary electrophoresis separation of monoclonal antibody isoforms using a neutral capillary. JoVE 119:55082

    Google Scholar 

  31. Haselberg R, van der Sneppen L, Ariese F, Ubachs W, Gooijer C, de Jong GJ, Somsen GW (2009) Effectiveness of charged noncovalent polymer coatings against protein adsorption to silica surfaces studied by evanescent-wave cavity ring-down spectroscopy and capillary electrophoresis. Anal Chem 81(24):10172–10178

    Article  CAS  Google Scholar 

  32. Haselberg R, de Jong GJ, Somsen GW (2010) Capillary electrophoresis-mass spectrometry of intact basic proteins using Polybrene-dextran sulfate-Polybrene-coated capillaries: system optimization and performance. Anal Chim Acta 678(1):128–134

    Article  CAS  Google Scholar 

  33. Erim FB, Cifuentes A, Poppe H, Kraak JC (1995) Performance of a physically adsorbed high-molecular-mass Polyethyleneimine layer as coating for the separation of basic-proteins and peptides by capillary electrophoresis. J Chromatogr A 708(2):356–361

    Article  Google Scholar 

  34. Ferrige AG, Seddon MJ, Jarvis S (1991) Maximum-entropy deconvolution in electrospray mass-spectrometry. Rapid Commun Mass Sp 5(8):374–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Domínguez-Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gstöttner, C., Haselberg, R., Wuhrer, M., Somsen, G.W., Domínguez-Vega, E. (2022). Assessment of Macro- and Microheterogeneity of Monoclonal Antibodies Using Capillary Zone Electrophoresis Hyphenated with Mass Spectrometry. In: Neusüß, C., Jooß, K. (eds) Capillary Electrophoresis-Mass Spectrometry . Methods in Molecular Biology, vol 2531. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2493-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2493-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2492-0

  • Online ISBN: 978-1-0716-2493-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics