Skip to main content

Imaging MS Analysis in Catharanthus roseus

  • Protocol
  • First Online:
Catharanthus roseus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2505))

Abstract

To understand how the plant regulates metabolism, it is important to determine where metabolites localize in the tissues and cells. Single-cell level omics approaches in plants have shown remarkable development over the last several years, and this data has been instrumental in gene discovery efforts for enzymes and transporters involved in metabolism. For metabolomics, Imaging Mass Spectrometry (IMS) is a powerful tool to map the spatial distribution of molecules in the tissue. Here, we describe the methods which we used to reveal where secondary metabolites, primarily alkaloids, localize in Catharanthus roseus stem and leaf tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214

    Article  CAS  Google Scholar 

  2. Svensson V, Vento-Tormo R, Teichmann SA (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13:599–604

    Article  CAS  Google Scholar 

  3. Budnik B, Levy E, Harmange G et al (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19(1):1–12

    Article  Google Scholar 

  4. Marx V (2019) A dream of single-cell proteomics. Nat Methods 16:809–812

    Article  CAS  Google Scholar 

  5. Dong Y, Li B, Aharoni A (2016) More than pictures: when MS imaging meets histology. Trends Plant Sci 21:686–698

    Article  CAS  Google Scholar 

  6. Takahashi K, Kozuka T, Anegawa A et al (2015) Development and application of a high-resolution imaging mass spectrometer for the study of plant tissues. Plant Cell Physiol 56:1329–1338

    Article  CAS  Google Scholar 

  7. Gigant B, Wang C, Ravelli RB et al (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435(7041):519–522

    Article  CAS  Google Scholar 

  8. Van der Heijden R, Jacobs DI, Snoeijer W et al (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  9. Verma P, Mathur AK, Srivastava A et al (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249(2):255–268

    Article  CAS  Google Scholar 

  10. Burlat V, Oudin A, Courtois M et al (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38(1):131–141

    Article  CAS  Google Scholar 

  11. Ozber N, Watkins JL, Facchini PJ (2020) Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. J Ind Microbiol Biotechnol 47(9–10):815–828

    Article  CAS  Google Scholar 

  12. Yoder LR, Mahlberg PG (1976) Reactions of alkaloid and histochemical indicators in laticifers and specialized parenchyma cells of Catharanthus roseus (Apocynaceae). Am J Bot 63(9):1167–1173

    Article  Google Scholar 

  13. Mizuno H, Tsuyama N, Harada T et al (2008) Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification. J Mass Spectrom 43:1692–1700

    Article  CAS  Google Scholar 

  14. Fujii T, Matsuda S, Tejedor ML et al (2015) Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat Protoc 10(9):1445–1456

    Article  CAS  Google Scholar 

  15. Yamamoto K, Takahashi K, Mizuno H et al (2016) Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with imaging MS and single-cell MS. Proc Natl Acad Sci U S A 113:3891–3896

    Article  CAS  Google Scholar 

  16. Yamamoto K, Takahashi K, Caputi L et al (2019) The complexity of intercellular localisation of alkaloids revealed by single-cell metabolomics. New Phytol 224:848–859

    Article  CAS  Google Scholar 

  17. Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536

    Article  CAS  Google Scholar 

  18. Prince JT, Marcotte EM (2008) Mspire: mass spectrometry proteomics in Ruby. Bioinformatics 24(23):2796–2797

    Article  CAS  Google Scholar 

  19. Schramm T, Hester Z, Klinkert I et al (2012) imzML--a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome 75(16):5106–5110

    Article  CAS  Google Scholar 

  20. Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751

    Article  CAS  Google Scholar 

  21. Shinbo Y, Nakamura Y, Altaf-Ul-Amin M et al (2006) KNApSAcK: a comprehensive species-metabolite relationship database. In: Nagata T (ed) Biotechnology in agriculture and forestry. Plant metabolomics, vol 57. Springer, Berlin, Heidelberg, pp 165–181

    Google Scholar 

  22. Uzaki M, Yamamoto K, Murakami A et al (2022) Differential regulation of fluorescent alkaloid metabolism between idioblast and lacticifer cells during leaf development in Catharanthus roseus seedlings. J Plant Res https://doi.org/10.1007/s10265-022-01380-1.

Download references

Acknowledgments

This work was supported by MEXT KAKENHI Grant Number JP22120006 and JSPS KAKENHI Grant Numbers JP24710235, JP18H05493, and Grant-in-Aid for JSPS Fellows 14J03616 and 20J00973. S.E.O. acknowledges ERC 788301.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kotaro Yamamoto or Tetsuro Mimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamamoto, K., Takahashi, K., O’Connor, S.E., Mimura, T. (2022). Imaging MS Analysis in Catharanthus roseus. In: Courdavault, V., Besseau, S. (eds) Catharanthus roseus. Methods in Molecular Biology, vol 2505. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2349-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2349-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2348-0

  • Online ISBN: 978-1-0716-2349-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics