Skip to main content

ELISpot Assay for the Detection of ASFV-Specific Interferon-Gamma (IFN-γ)-Producing Cells

  • Protocol
  • First Online:
African Swine Fever Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2503))

Abstract

The enzyme-linked immunospot (ELISpot) assay is a technique of unparalleled sensitivity to determine the frequency of antigen-specific immune cells secreting an immunomodulatory mediator upon recall antigen stimulation, making it a valuable tool in vaccine research. Typically done in multi-well microplate format, it also allows a high-throughput analysis of numerous immune cell samples, e.g., from different donor subjects, especially with the help of automated plate readers and specialized software that currently exist in most laboratories. IFN-γ is a hallmark cytokine secreted especially by T-cell subsets in recall response to pathogens, and consequently the IFN-γ ELISpot assay is one of the most widely used. The cellular arm of the immune response is known to be fundamental in protection against virulent ASFV, and therefore this assay is frequently employed in ASFV vaccine research to evaluate the results from immunization experiments.

The technique involves the use of plates with wells that have a membrane for base with a strong binding capacity for amino acids that thus can be densely coated with an antibody for IFN-γ. Upon adding cells and specific antigen or other control stimuli, responding cells will release IFN-γ that is captured by the antibody in close proximity and revealed using a second antibody (sandwich method) through either chromogenic or fluorescent methods, leading to the detection of a “spot” on the membrane for each positive cell. Here we detail our protocol to detect the frequency of ASFV antigen-specific IFN-γ-producing cells in immunized pig lymphocytes and give an example of a typical result using the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Czerkinsky CC, Nilsson LA, Nygren H et al (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65(1–2):109–121. https://doi.org/10.1016/0022-1759(83)90308-3

    Article  CAS  PubMed  Google Scholar 

  2. Sedgwick JD, Holt PG (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods 57(1–3):301–309. https://doi.org/10.1016/0022-1759(83)90091-1

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann PV, Zhang W (2012) Unique strengths of ELISPOT for T cell diagnostics. Methods Mol Biol 792:3–23. https://doi.org/10.1007/978-1-61779-325-7_1

    Article  CAS  PubMed  Google Scholar 

  4. Ranieri E, Popescu I, Gigante M (2014) CTL ELISPOT assay Methods Mol Biol 1186:75–86. https://doi.org/10.1007/978-1-4939-1158-5_6

    Article  CAS  PubMed  Google Scholar 

  5. Weiss AJ (2012) Overview of membranes and membrane plates used in research and diagnostic ELISPOT assays. Methods Mol Biol 792:243–256. https://doi.org/10.1007/978-1-61779-325-7_19

    Article  CAS  PubMed  Google Scholar 

  6. Billiau A, Matthys P (2009) Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev 20(2):97–113. https://doi.org/10.1016/j.cytogfr.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  7. Hanson J, Roen DR, Lehmann PV (2018) Four color ImmunoSpot((R)) assays for identification of effector T-cell lineages. Methods Mol Biol 1808:51–62. https://doi.org/10.1007/978-1-4939-8567-8_5

    Article  CAS  PubMed  Google Scholar 

  8. Netherton CL, Goatley LC, Reis AL et al (2019) Identification and immunogenicity of African swine fever virus antigens. Front Immunol 10:1318. https://doi.org/10.3389/fimmu.2019.01318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karulin AY, Megyesi Z, Caspell R et al (2018) Multiplexing T- and B-cell FLUOROSPOT assays: experimental validation of the multi-color ImmunoSpot((R)) software based on Center of Mass Distance Algorithm. Methods Mol Biol 1808:95–113. https://doi.org/10.1007/978-1-4939-8567-8_9

    Article  CAS  PubMed  Google Scholar 

  10. Jahnmatz P, Sundling C, Makower B et al (2020) Multiplex analysis of antigen-specific memory B cells in humans using reversed B-cell FluoroSpot. J Immunol Methods 478:112715. https://doi.org/10.1016/j.jim.2019.112715

    Article  CAS  PubMed  Google Scholar 

  11. Leitao A, Cartaxeiro C, Coelho R et al (2001) The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol 82(Pt 3):513–523. https://doi.org/10.1099/0022-1317-82-3-513

    Article  CAS  PubMed  Google Scholar 

  12. Martins CL, Lawman MJ, Scholl T et al (1993) African swine fever virus specific porcine cytotoxic T cell activity. Arch Virol 129(1–4):211–225. https://doi.org/10.1007/BF01316896

    Article  CAS  PubMed  Google Scholar 

  13. Oura CAL, Denyer MS, Takamatsu H et al (2005) In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 86(Pt 9):2445–2450. https://doi.org/10.1099/vir.0.81038-0

    Article  CAS  PubMed  Google Scholar 

  14. Nakiboneka R, Mugaba S, Auma BO et al (2019) Interferon gamma (IFN-gamma) negative CD4+ and CD8+ T-cells can produce immune mediators in response to viral antigens. Vaccine 37(1):113–122. https://doi.org/10.1016/j.vaccine.2018.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malyguine AM, Strobl S, Dunham K et al (2012) ELISPOT assay for monitoring cytotoxic T lymphocytes (CTL) activity in cancer vaccine clinical trials. Cell 1(2):111–126. https://doi.org/10.3390/cells1020111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department for Environment, Food & Rural Affairs (DEFRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Portugal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Portugal, R. (2022). ELISpot Assay for the Detection of ASFV-Specific Interferon-Gamma (IFN-γ)-Producing Cells. In: Netherton, C.L. (eds) African Swine Fever Virus. Methods in Molecular Biology, vol 2503. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2333-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2333-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2332-9

  • Online ISBN: 978-1-0716-2333-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics