Skip to main content

Solid-State NMR Spectroscopy on Microbial Rhodopsins

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

Abstract

Microbial rhodopsins represent the most abundant phototrophic systems known today. A similar molecular architecture with seven transmembrane helices and a retinal cofactor linked to a lysine in helix 7 enables a wide range of functions including ion pumping, light-controlled ion channel gating, or sensing. Deciphering their molecular mechanisms therefore requires a combined consideration of structural, functional, and spectroscopic data in order to identify key factors determining their function. Important insight can be gained by solid-state NMR spectroscopy by which the large homo-oligomeric rhodopsin complexes can be studied directly within lipid bilayers. This chapter describes the methodological background and the necessary sample preparation requirements for the study of photointermediates, for the analysis of protonation states, H-bonding and chromophore conformations, for 3D structure determination, and for probing oligomer interfaces of microbial rhodopsins. The use of data extracted from these NMR experiments is discussed in the context of complementary biophysical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grote M, O’Malley MA (2011) Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev 35(6):1082–1099. https://doi.org/10.1111/j.1574-6976.2011.00281.x

    Article  CAS  PubMed  Google Scholar 

  2. Govorunova EG, Sineshchekov OA, Li H, Spudich JL (2017) Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu Rev Biochem 86:845–872. https://doi.org/10.1146/annurev-biochem-101910-144233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411(6839):786–789. https://doi.org/10.1038/35081051

    Article  CAS  PubMed  Google Scholar 

  4. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289(5486):1902–1906. https://doi.org/10.1126/science.289.5486.1902

    Article  CAS  PubMed  Google Scholar 

  5. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H (2013) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678. https://doi.org/10.1038/ncomms2689

    Article  CAS  PubMed  Google Scholar 

  6. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945. https://doi.org/10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47(6):1513–1522. https://doi.org/10.1046/j.1365-2958.2003.03395.x

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10(10):1007–1012. https://doi.org/10.1038/nmeth.2635

    Article  CAS  PubMed  Google Scholar 

  9. Carravetta M, Zhao X, Johannessen OG, Lai WC, Verhoeven MA, Bovee-Geurts PH, Verdegem PJ, Kiihne S, Luthman H, de Groot HJ, deGrip WJ, Lugtenburg J, Levitt MH (2004) Protein-induced bonding perturbation of the rhodopsin chromophore detected by double-quantum solid-state NMR. J Am Chem Soc 126(12):3948–3953. https://doi.org/10.1021/ja039390q

    Article  CAS  PubMed  Google Scholar 

  10. Lansing JC, Hohwy M, Jaroniec CP, Creemers AF, Lugtenburg J, Herzfeld J, Griffin RG (2002) Chromophore distortions in the bacteriorhodopsin photocycle: evolution of the H-C14-C15-H dihedral angle measured by solid-state NMR. Biochemistry 41(2):431–438. https://doi.org/10.1021/bi011529r

    Article  CAS  PubMed  Google Scholar 

  11. Mao J, Aladin V, Jin X, Leeder AJ, Brown LJ, Brown RCD, He X, Corzilius B, Glaubitz C (2019) Exploring protein structures by DNP-enhanced methyl solid-state NMR spectroscopy. J Am Chem Soc 141(50):19888–19901. https://doi.org/10.1021/jacs.9b11195

    Article  CAS  PubMed  Google Scholar 

  12. Ding X, Sun C, Cui H, Chen S, Gao Y, Yang Y, Wang J, He X, Iuga D, Tian F, Watts A, Zhao X (2018) Functional roles of tyrosine 185 during the bacteriorhodopsin photocycle as revealed by in situ spectroscopic studies. Biochim Biophys Acta Bioenerg 1859(10):1006–1014. https://doi.org/10.1016/j.bbabio.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  13. Ni QZ, Can TV, Daviso E, Belenky M, Griffin RG, Herzfeld J (2018) Primary transfer step in the light-driven ion pump bacteriorhodopsin: an irreversible U-turn revealed by dynamic nuclear polarization-enhanced magic angle spinning NMR. J Am Chem Soc 140(11):4085–4091. https://doi.org/10.1021/jacs.8b00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maciejko J, Kaur J, Becker-Baldus J, Glaubitz C (2019) Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR. Proc Natl Acad Sci U S A 116(17):8342–8349. https://doi.org/10.1073/pnas.1817665116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shibata M, Inoue K, Ikeda K, Konno M, Singh M, Kataoka C, Abe-Yoshizumi R, Kandori H, Uchihashi T (2018) Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci Rep 8(1):8262. https://doi.org/10.1038/s41598-018-26606-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaur J, Kriebel CN, Eberhardt P, Jakdetchai O, Leeder AJ, Weber I, Brown LJ, Brown RCD, Becker-Baldus J, Bamann C, Wachtveitl J, Glaubitz C (2019) Solid-state NMR analysis of the sodium pump Krokinobacter rhodopsin 2 and its H30A mutant. J Struct Biol 206(1):55–65. https://doi.org/10.1016/j.jsb.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  17. Jakdetchai O, Eberhardt P, Asido M, Kaur J, Kriebel CN, Mao J, Leeder AJ, Brown LJ, Brown RCD, Becker-Baldus J, Bamann C, Wachtveitl J, Glaubitz C (2021) Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR. Sci Adv 7(11):eabf4213. https://doi.org/10.1126/sciadv.abf4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump--structural insights. J Mol Biol 386(4):1078–1093. https://doi.org/10.1016/j.jmb.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  19. Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Eng 46(3):459–462. https://doi.org/10.1002/anie.200602139

    Article  CAS  Google Scholar 

  20. Lalli D, Idso MN, Andreas LB, Hussain S, Baxter N, Han S, Chmelka BF, Pintacuda G (2017) Proton-based structural analysis of a heptahelical transmembrane protein in lipid bilayers. J Am Chem Soc 139(37):13006–13012. https://doi.org/10.1021/jacs.7b05269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B (2011) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Eng 50(19):4508–4512. https://doi.org/10.1002/anie.201008244

    Article  CAS  Google Scholar 

  22. Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46(9):1933–1941. https://doi.org/10.1021/ar300348n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276(5314):930–932. https://doi.org/10.1126/science.276.5314.930

    Article  CAS  PubMed  Google Scholar 

  24. Sauvee C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed Eng 52(41):10858–10861. https://doi.org/10.1002/anie.201304657

    Article  CAS  Google Scholar 

  25. Mehler M, Eckert CE, Leeder AJ, Kaur J, Fischer T, Kubatova N, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C (2017) Chromophore distortions in photointermediates of proteorhodopsin visualized by dynamic nuclear polarization-enhanced solid-state NMR. J Am Chem Soc 139(45):16143–16153. https://doi.org/10.1021/jacs.7b05061

    Article  CAS  PubMed  Google Scholar 

  26. Leeder AJ, Brown LJ, Becker-Baldus J, Mehler M, Glaubitz C, Brown RCD (2018) Synthesis of isotopically labeled all-trans retinals for DNP-enhanced solid-state NMR studies of retinylidene proteins. J Label Comp Radiopharm 61(13):922–933. https://doi.org/10.1002/jlcr.3576

    Article  CAS  Google Scholar 

  27. Creemers AF, Kiihne S, Bovee-Geurts PH, DeGrip WJ, Lugtenburg J, de Groot HJ (2002) (1)H and (13)C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc Natl Acad Sci U S A 99(14):9101–9106. https://doi.org/10.1073/pnas.112677599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dawadi PB, Lugtenburg J (2010) Synthesis and use of stable isotope enriched retinals in the field of vitamin A. Molecules 15(3):1825–1872. https://doi.org/10.3390/molecules15031825

    Article  CAS  PubMed  Google Scholar 

  29. Makino Y, Kawamura I, Okitsu T, Wada A, Kamo N, Sudo Y, Ueda K, Naito A (2018) Retinal configuration of ppR intermediates revealed by photoirradiation solid-state NMR and DFT. Biophys J 115(1):72–83. https://doi.org/10.1016/j.bpj.2018.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Munro RA, de Vlugt J, Ward ME, Kim SY, Lee KA, Jung KH, Ladizhansky V, Brown LS (2019) Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins. J Biomol NMR 73(1–2):49–58. https://doi.org/10.1007/s10858-019-00225-9

    Article  CAS  PubMed  Google Scholar 

  31. Becker-Baldus J, Bamann C, Saxena K, Gustmann H, Brown LJ, Brown RC, Reiter C, Bamberg E, Wachtveitl J, Schwalbe H, Glaubitz C (2015) Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 112(32):9896–9901. https://doi.org/10.1073/pnas.1507713112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hatcher ME, Hu JG, Belenky M, Verdegem P, Lugtenburg J, Griffin RG, Herzfeld J (2002) Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Biophys J 82(2):1017–1029. https://doi.org/10.1016/S0006-3495(02)75461-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lacabanne D, Meier BH, Bockmann A (2018) Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. J Biomol NMR 71(3):141–150. https://doi.org/10.1007/s10858-017-0156-z

    Article  CAS  PubMed  Google Scholar 

  34. Mehler M, Eckert CE, Busche A, Kulhei J, Michaelis J, Becker-Baldus J, Wachtveitl J, Dotsch V, Glaubitz C (2015) Assembling a correctly folded and functional heptahelical membrane protein by protein trans-splicing. J Biol Chem 290(46):27712–27722. https://doi.org/10.1074/jbc.M115.681205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49(2):151–161. https://doi.org/10.1007/s10858-011-9473-9

    Article  CAS  PubMed  Google Scholar 

  36. Janke C, Scholz F, Becker-Baldus J, Glaubitz C, Wood PG, Bamberg E, Wachtveitl J, Bamann C (2013) Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry 52(16):2750–2763. https://doi.org/10.1021/bi301412n

    Article  CAS  PubMed  Google Scholar 

  37. Ward ME, Wang S, Munro R, Ritz E, Hung I, Gor’kov PL, Jiang Y, Liang H, Brown LS, Ladizhansky V (2015) In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane. Biophys J 108(7):1683–1696. https://doi.org/10.1016/j.bpj.2015.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ullrich SJ, Holper S, Glaubitz C (2014) Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd(3)(+)-complexes for solid-state NMR spectroscopy. J Biomol NMR 58(1):27–35. https://doi.org/10.1007/s10858-013-9800-4

    Article  CAS  PubMed  Google Scholar 

  39. Becker-Baldus J, Glaubitz C (2018) Cryo-trapped intermediates of retinal proteins studied by DNP-enhanced MAS NMR spectroscopy. eMagRes 7(4):79–91. https://doi.org/10.1002/9780470034590.emrstm1552

    Article  CAS  Google Scholar 

  40. Milikisiyants S, Wang S, Munro RA, Donohue M, Ward ME, Bolton D, Brown LS, Smirnova TI, Ladizhansky V, Smirnov AI (2017) Oligomeric structure of anabaena sensory rhodopsin in a lipid bilayer environment by combining solid-state NMR and long-range DEER constraints. J Mol Biol 429(12):1903–1920. https://doi.org/10.1016/j.jmb.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  41. Voinov MA, Good DB, Ward ME, Milikisiyants S, Marek A, Caporini MA, Rosay M, Munro RA, Ljumovic M, Brown LS, Ladizhansky V, Smirnov AI (2015) Cysteine-specific labeling of proteins with a nitroxide biradical for dynamic nuclear polarization NMR. J Phys Chem B 119(32):10180–10190. https://doi.org/10.1021/acs.jpcb.5b05230

    Article  CAS  PubMed  Google Scholar 

  42. Naito A, Makino Y, Shigeta A, Kawamura I (2019) Photoreaction pathways and photointermediates of retinal-binding photoreceptor proteins as revealed by in situ photoirradiation solid-state NMR spectroscopy. Biophys Rev 11(2):167–181. https://doi.org/10.1007/s12551-019-00501-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E (2002) Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol 321(5):821–838. https://doi.org/10.1016/S0022-2836(02)00696-4

    Article  CAS  PubMed  Google Scholar 

  44. Harbison GS, Smith SO, Pardoen JA, Winkel C, Lugtenburg J, Herzfeld J, Mathies R, Griffin RG (1984) Dark-adapted bacteriorhodopsin contains 13-cis, 15-syn and all-trans, 15-anti retinal Schiff bases. Proc Natl Acad Sci U S A 81(6):1706–1709. https://doi.org/10.1073/pnas.81.6.1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buhl E, Eberhardt P, Bamann C, Bamberg E, Braun M, Wachtveitl J (2018) Ultrafast protein response in channelrhodopsin-2 studied by time-resolved infrared spectroscopy. J Phys Chem Lett 9(24):7180–7184. https://doi.org/10.1021/acs.jpclett.8b03382

    Article  CAS  PubMed  Google Scholar 

  46. Eckert CE, Kaur J, Glaubitz C, Wachtveitl J (2017) Ultrafast photoinduced deactivation dynamics of proteorhodopsin. J Phys Chem Lett 8(2):512–517. https://doi.org/10.1021/acs.jpclett.6b02975

    Article  CAS  PubMed  Google Scholar 

  47. Jeon J, Thurber KR, Ghirlando R, Yau WM, Tycko R (2019) Application of millisecond time-resolved solid state NMR to the kinetics and mechanism of melittin self-assembly. Proc Natl Acad Sci U S A 116(34):16717–16722. https://doi.org/10.1073/pnas.1908006116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harbison GS, Mulder PPJ, Pardoen H, Lugtenburg J, Herzfeld J, Griffin RG (1985) High-resolution carbon-13 NMR of retinal derivatives in the solid state. J Am Chem Soc 107(17):4809–4816. https://doi.org/10.1021/ja00303a001

    Article  CAS  Google Scholar 

  49. Englert G (1975) A 13C-NMR. Study of cis-trans isomeric vitamins A, carotenoids and related compounds. Helv Chim Acta 58(8):2367–2390. https://doi.org/10.1002/hlca.19750580817

    Article  CAS  PubMed  Google Scholar 

  50. Farrar MR, Lakshmi KV, Smith SO, Brown RS, Raap J, Lugtenburg J, Griffin RG, Herzfeld J (1993) Solid state NMR study of [epsilon-13C]Lys-bacteriorhodopsin: schiff base photoisomerization. Biophys J 65(1):310–315. https://doi.org/10.1016/S0006-3495(93)81065-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG (1992) Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Biochemistry 31(34):7931–7938. https://doi.org/10.1021/bi00149a026

    Article  CAS  PubMed  Google Scholar 

  52. Harbison GS, Herzfeld J, Griffin RG (1983) Solid-state nitrogen-15 nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin. Biochemistry 22(1):1–4. https://doi.org/10.1021/bi00270a600

    Article  CAS  PubMed  Google Scholar 

  53. Mao J, Do NN, Scholz F, Reggie L, Mehler M, Lakatos A, Ong YS, Ullrich SJ, Brown LJ, Brown RC, Becker-Baldus J, Wachtveitl J, Glaubitz C (2014) Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy. J Am Chem Soc 136(50):17578–17590. https://doi.org/10.1021/ja5097946

    Article  CAS  PubMed  Google Scholar 

  54. Feng X, Verdegem PJE, Lee YK, Sandstrom D, Eden M, BoveeGeurts P, deGrip WJ, Lugtenburg J, deGroot HJM, Levitt MH (1997) Direct determination of a molecular torsional angle in the membrane protein rhodopsin by solid-state NMR. J Am Chem Soc 119(29):6853–6857. https://doi.org/10.1021/ja970710d

    Article  CAS  Google Scholar 

  55. Bondar AN, Elstner M, Suhai S, Smith JC, Fischer S (2004) Mechanism of primary proton transfer in bacteriorhodopsin. Structure 12(7):1281–1288. https://doi.org/10.1016/j.str.2004.04.016

    Article  CAS  PubMed  Google Scholar 

  56. Hong M (1999) Determination of multiple ***φ***-torsion angles in proteins by selective and extensive (13)C labeling and two-dimensional solid-state NMR. J Magn Reson 139(2):389–401. https://doi.org/10.1006/jmre.1999.1805

    Article  CAS  PubMed  Google Scholar 

  57. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31(6):1647–1651. https://doi.org/10.1021/bi00121a010

    Article  CAS  PubMed  Google Scholar 

  58. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223. https://doi.org/10.1007/s10858-009-9333-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405. https://doi.org/10.1146/annurev.biophys.093008.131321

    Article  CAS  PubMed  Google Scholar 

  60. Nadaud PS, Helmus JJ, Hofer N, Jaroniec CP (2007) Long-range structural restraints in spin-labeled proteins probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 129(24):7502–7503. https://doi.org/10.1021/ja072349t

    Article  CAS  PubMed  Google Scholar 

  61. Wang S, Munro RA, Kim SY, Jung KH, Brown LS, Ladizhansky V (2012) Paramagnetic relaxation enhancement reveals oligomerization interface of a membrane protein. J Am Chem Soc 134(41):16995–16998. https://doi.org/10.1021/ja308310z

    Article  CAS  PubMed  Google Scholar 

  62. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921. https://doi.org/10.1107/s0907444998003254

    Article  CAS  PubMed  Google Scholar 

  63. Bardiaux B, Malliavin T, Nilges M (2012) ARIA for solution and solid-state NMR. Methods Mol Biol 831:453–483. https://doi.org/10.1007/978-1-61779-480-3_23

    Article  CAS  PubMed  Google Scholar 

  64. Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H (2004) Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science 306(5700):1390–1393. https://doi.org/10.1126/science.1103943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V (2011) Site-specific solid-state NMR detection of hydrogen-deuterium exchange reveals conformational changes in a 7-helical transmembrane protein. Biophys J 101(3):L23–L25. https://doi.org/10.1016/j.bpj.2011.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang J, Aslimovska L, Glaubitz C (2011) Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J Am Chem Soc 133(13):4874–4881. https://doi.org/10.1021/ja109766n

    Article  CAS  PubMed  Google Scholar 

  67. Etzkorn M, Seidel K, Li L, Martell S, Geyer M, Engelhard M, Baldus M (2010) Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 18(3):293–300. https://doi.org/10.1016/j.str.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  68. Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V (2014) Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR. J Am Chem Soc 136(7):2833–2842. https://doi.org/10.1021/ja411633w

    Article  CAS  PubMed  Google Scholar 

  69. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257(5521):28–32. https://doi.org/10.1038/257028a0

    Article  CAS  PubMed  Google Scholar 

  70. Shastri S, Vonck J, Pfleger N, Haase W, Kuehlbrandt W, Glaubitz C (2007) Proteorhodopsin: characterisation of 2D crystals by electron microscopy and solid state NMR. Biochim Biophys Acta 1768(12):3012–3019. https://doi.org/10.1016/j.bbamem.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  71. Klyszejko AL, Shastri S, Mari SA, Grubmuller H, Muller DJ, Glaubitz C (2008) Folding and assembly of proteorhodopsin. J Mol Biol 376(1):35–41. https://doi.org/10.1016/j.jmb.2007.11.030

    Article  CAS  PubMed  Google Scholar 

  72. Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C (2015) Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by dynamic-nuclear-polarization-enhanced solid-state NMR. J Am Chem Soc 137(28):9032–9043. https://doi.org/10.1021/jacs.5b03606

    Article  CAS  PubMed  Google Scholar 

  73. Hoffmann J, Aslimovska L, Bamann C, Glaubitz C, Bamberg E, Brutschy B (2010) Studying the stoichiometries of membrane proteins by mass spectrometry: microbial rhodopsins and a potassium ion channel. Phys Chem Chem Phys 12(14):3480–3485. https://doi.org/10.1039/b924630d

    Article  CAS  PubMed  Google Scholar 

  74. Iizuka A, Kajimoto K, Fujisawa T, Tsukamoto T, Aizawa T, Kamo N, Jung KH, Unno M, Demura M, Kikukawa T (2019) Functional importance of the oligomer formation of the cyanobacterial H(+) pump Gloeobacter rhodopsin. Sci Rep 9(1):10711. https://doi.org/10.1038/s41598-019-47178-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hussain S, Kinnebrew M, Schonenbach NS, Aye E, Han S (2015) Functional consequences of the oligomeric assembly of proteorhodopsin. J Mol Biol 427(6 Pt B):1278–1290. https://doi.org/10.1016/j.jmb.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102(2–3):377–390. https://doi.org/10.1007/s11120-009-9490-7

    Article  CAS  PubMed  Google Scholar 

  77. Edwards DT, Huber T, Hussain S, Stone KM, Kinnebrew M, Kaminker I, Matalon E, Sherwin MS, Goldfarb D, Han S (2014) Determining the oligomeric structure of proteorhodopsin by Gd3+-based pulsed dipolar spectroscopy of multiple distances. Structure 22(11):1677–1686. https://doi.org/10.1016/j.str.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  78. Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1(1):418–428. https://doi.org/10.1038/nprot.2006.62

    Article  CAS  PubMed  Google Scholar 

  79. Hempelmann F, Holper S, Verhoefen MK, Woerner AC, Kohler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C (2011) His75-Asp97 cluster in green proteorhodopsin. J Am Chem Soc 133(12):4645–4654. https://doi.org/10.1021/ja111116a

    Article  CAS  PubMed  Google Scholar 

  80. Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, Luecke H (2013) Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr D Biol Crystallogr 69(Pt 10):1965–1980. https://doi.org/10.1107/S0907444913017575

    Article  CAS  PubMed  Google Scholar 

  81. Kovalev K, Astashkin R, Gushchin I, Orekhov P, Volkov D, Zinovev E, Marin E, Rulev M, Alekseev A, Royant A, Carpentier P, Vaganova S, Zabelskii D, Baeken C, Sergeev I, Balandin T, Bourenkov G, Carpena X, Boer R, Maliar N, Borshchevskiy V, Buldt G, Bamberg E, Gordeliy V (2020) Molecular mechanism of light-driven sodium pumping. Nat Commun 11(1):2137. https://doi.org/10.1038/s41467-020-16032-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stone KM, Voska J, Kinnebrew M, Pavlova A, Junk MJ, Han S (2013) Structural insight into proteorhodopsin oligomers. Biophys J 104(2):472–481. https://doi.org/10.1016/j.bpj.2012.11.3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gansmuller A, Concistre M, McLean N, Johannessen OG, Marin-Montesinos I, Bovee-Geurts PH, Verdegem P, Lugtenburg J, Brown RC, Degrip WJ, Levitt MH (2009) Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor. Biochim Biophys Acta 1788(6):1350–1357. https://doi.org/10.1016/j.bbamem.2009.02.018

    Article  CAS  PubMed  Google Scholar 

  84. Toker Y, Langeland J, Gruber E, Kjaer C, Nielsen SB, Andersen LH, Bonin VA, Schapiro I (2018) Counterion-controlled spectral tuning of the protonated Schiff-base retinal. Phys Rev A 98(4):043428. https://doi.org/10.1103/PhysRevA.98.043428

    Article  CAS  Google Scholar 

  85. Hoffmann M, Wanko M, Strodel P, Konig PH, Frauenheim T, Schulten K, Thiel W, Tajkhorshid E, Elstner M (2006) Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 128(33):10808–10818. https://doi.org/10.1021/ja062082i

    Article  CAS  PubMed  Google Scholar 

  86. He X, Wang B, Merz KM Jr (2009) Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. J Phys Chem B 113(30):10380–10388. https://doi.org/10.1021/jp901992p

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Glaubitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kriebel, C.N., Becker-Baldus, J., Glaubitz, C. (2022). Solid-State NMR Spectroscopy on Microbial Rhodopsins. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics