Skip to main content

Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

Abstract

There is no question that genetically encoded tools have revolutionized neuroscience. These include optically modulated tools for writing-in (optogenetics) and reading-out (calcium, voltage, and neurotransmitter indicators) neural activity as well as precision expression of these reagents using virally mediated delivery. With few exceptions, these powerful approaches are derived from naturally occurring molecules that are sourced from diverse organisms that span all kingdoms of life. Successful expression of genetic tools in standard neuroscience model organisms requires optimizing gene structure, taking into account differences in both protein translation and trafficking. Myriad approaches have resolved these two challenges, resulting in order-of-magnitude increases in functional expression. In this chapter, we focus on synthesizing prior experience in successfully enabling the transition of genes across kingdoms with a goal of facilitating the production of the next generation of molecular tools for neuroscience. We then provide a detailed protocol that allows expression and testing of novel genetically encoded tools in mammalian cell lines and primary cultured neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  3. Tervo DGR, Hwang BY, Viswanathan S et al (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan KY, Jang MJ, Yoo BB et al (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nathanson JL, Yanagawa Y, Obata K et al (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450

    Article  CAS  PubMed  Google Scholar 

  6. Grimm D, Lee JS, Wang L et al (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82:5887–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sohal VS, Zhang F, Yizhar O et al (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atasoy D, Aponte Y, Su HH et al (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fenno LE, Mattis J, Ramakrishnan C et al (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11:763–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang F, Wang LP, Boyden ES et al (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3:785–792

    Article  CAS  PubMed  Google Scholar 

  11. Deisseroth K, Feng G, Majewska AK et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang F, Prigge M, Beyriere F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  15. Marshel JH, Kim YS, Machado TA et al (2019) Cortical layer-specific critical dynamics triggering perception. Science 80:365

    Google Scholar 

  16. Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berndt A, Lee SY, Wietek J et al (2016) Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci U S A 113:822–829

    Article  CAS  PubMed  Google Scholar 

  18. Baker BJ, Mutoh H, Dimitrov D et al (2008) Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol 36(1–4):53–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim CK, Adhikari A, Deisseroth K (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18:222–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang W, Wildes CP, Pattarabanjird T et al (2017) A light- a nd calcium-gated transcription factor for imaging and manipulating activated neurons. Nat Biotechnol 35:864–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levskaya A, Weiner OD, Lim WA et al (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461:997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  CAS  PubMed  Google Scholar 

  23. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  24. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu Y, Wang C, Sun H et al (2009) High-efficient FLPo deleter mice in C57BL/6J background. PLoS One 4:e8054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim EJ, Jacobs MW, Ito-Cole T et al (2016) Improved monosynaptic neural circuit tracing using engineered rabies virus glycoproteins. Cell Rep 15:692–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger rNAS. Nucleic Acids Res 15:8125–8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292

    Article  CAS  PubMed  Google Scholar 

  29. Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  30. Fitzgerald M, Shenk T (1981) The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260

    Article  CAS  PubMed  Google Scholar 

  31. Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tkatch T, Greotti E, Baranauskas G et al (2017) Optogenetic control of mitochondrial metabolism & Ca2+ signaling by mitochondria-targeted opsins. Proc Natl Acad Sci U S A 114:E5167–E5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rost BR, Schneider F, Grauel MK et al (2015) Optogenetic acidification of synaptic vesicles and lysosomes. Nat Neurosci 18:1845–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baker CA, Elyada YM, Parra A et al (2016) Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. elife 5:e14193

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shemesh OA, Tanese D, Zampini V et al (2017) Temporally precise single-cell-resolution optogenetics. Nat Neurosci 20:1796–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu C, Ivanova E, Cui J et al (2011) Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell. J Neurosci 31:14654–14659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lewis TL, Mao T, Svoboda K et al (2009) Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 12:568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82:797–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  40. Specht EA, Braselmann E, Palmer AE (2017) A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol 79:93–117

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

    Article  CAS  PubMed  Google Scholar 

  42. Packer AM, Peterka DS, Hirtz JJ et al (2012) Two-photon optogenetics of dendritic spines and neural circuits. Nat Methods 9:1202–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prakash R, Yizhar O, Grewe B et al (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9:1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  CAS  PubMed  Google Scholar 

  45. Donnelly MLL, Luke G, Mehrotra A et al (2001) Analysis of the aphthovirus 2A/2B polyprotein “cleavage” mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal “skip”. J Gen Virol 82:1013–1025

    Article  CAS  PubMed  Google Scholar 

  46. Donnelly MLL, Hughes LE, Luke G et al (2001) The “cleavage” activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring “2A-like” sequences. J Gen Virol 82:1027–1041

    Article  CAS  PubMed  Google Scholar 

  47. Mizuguchi H, Xu Z, Ishii-Watabe A et al (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a Bicistronic vector. Mol Ther 1:376–382

    Article  CAS  PubMed  Google Scholar 

  48. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  CAS  PubMed  Google Scholar 

  49. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang M, Chen G (2006) High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700

    Article  CAS  PubMed  Google Scholar 

  51. Köhrmann M, Haubensak W, Hemraj I et al (1999) Fast, convenient, and effective method to transiently transfect primary hippocampal neurons. J Neurosci Res 58:831–835

    Article  PubMed  Google Scholar 

  52. Miyashita T, Shao YR, Chung J et al (2013) Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits 7:8

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fenno LE, Ramakrishnan C, Kim YS et al (2020) Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. J Clean Prod 107:836–853.e11

    CAS  Google Scholar 

  54. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  CAS  PubMed  Google Scholar 

  55. Hitoshi N, Ken-ichi Y, Jun-ichi M (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  Google Scholar 

  56. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  57. Wietek J, Wiegert JS, Adeishvili N et al (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Yizhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fenno, L.E., Levy, R., Yizhar, O. (2022). Molecular Optimization of Rhodopsin-Based Tools for Neuroscience Applications. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics