Skip to main content

The Barley and Wheat Pan-Genomes

  • Protocol
  • First Online:
Plant Bioinformatics

Abstract

To unlock the genetic potential in crops, multi-genome comparisons are an essential tool. Decreasing costs and improved sequencing technologies have democratized plant genome sequencing and led to a vast increase in the amount of available reference sequences on the one hand and enabled the assembly of even the largest and most complex and repetitive crops genomes such as wheat and barley. These developments have led to the era of pan-genomics in recent years. Pan-genome projects enable the definition of the core and dispensable genome for various crop species as well as the analysis of structural and functional variation and hence offer unprecedented opportunities for exploring and utilizing the genetic basis of natural variation in crops. Comparing, analyzing, and visualizing these multiple reference genomes and their diversity requires powerful and specialized computational strategies and tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Monat C et al (2019) TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol 20(1):284

    Article  CAS  Google Scholar 

  2. Mascher M et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433

    Article  CAS  Google Scholar 

  3. International Wheat Genome Sequencing, C et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191

    Article  Google Scholar 

  4. van Berkum NL et al (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp (39)

    Google Scholar 

  5. Walkowiak S et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588(7837):277–283

    Article  CAS  Google Scholar 

  6. Milner SG et al (2019) Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51(2):319–326

    Article  CAS  Google Scholar 

  7. Jayakodi M et al (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588(7837):284–289

    Article  CAS  Google Scholar 

  8. Himmelbach A et al (2018) Discovery of multi-megabase polymorphic inversions by chromosome conformation capture sequencing in large-genome plant species. Plant J 96(6):1309–1316

    Article  CAS  Google Scholar 

  9. Comadran J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44(12):1388–1392

    Article  CAS  Google Scholar 

  10. Rapazote-Flores P et al (2019) BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics 20(1):968

    Article  CAS  Google Scholar 

  11. Gordon Gremme VB, Michael ES, Kurtz S (2005) Engineering a software tool for gene structure prediction in higher organisms. Inf Softw Technol 47(15):965–978

    Article  Google Scholar 

  12. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21(9):1859–1875

    Article  CAS  Google Scholar 

  13. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  Google Scholar 

  14. Pertea M et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    Article  CAS  Google Scholar 

  15. Ghosh S, Chan CK (2016) Analysis of RNA-Seq data using TopHat and Cufflinks. Methods Mol Biol 1374:339–361

    Article  CAS  Google Scholar 

  16. Haas BJ et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  Google Scholar 

  17. Hoff KJ, Stanke M (2019) Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinformatics 65(1):e57

    PubMed  Google Scholar 

  18. Haas BJ et al (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 9(1):R7

    Article  Google Scholar 

  19. Haas BJ et al (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31(19):5654–5666

    Article  CAS  Google Scholar 

  20. Tomato Genome, C (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641

    Article  Google Scholar 

  21. Wicker T, Matthews DE, Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7(12):561–562

    Article  CAS  Google Scholar 

  22. Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 1962:227–245

    Article  CAS  Google Scholar 

  23. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Slater GS, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31

    Article  Google Scholar 

  25. Galperin MY et al (2021) COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 49(D1):D274–D281

    Article  CAS  Google Scholar 

  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  Google Scholar 

  27. Spannagl M et al (2016) PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res 44(D1):D1141–D1147

    Article  CAS  Google Scholar 

  28. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580

    Article  CAS  Google Scholar 

  29. Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:18

    Article  Google Scholar 

  30. Howe KL et al (2020) Ensembl Genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Res 48(D1):D689–D695

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Spannagl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kamal, N. et al. (2022). The Barley and Wheat Pan-Genomes. In: Edwards, D. (eds) Plant Bioinformatics. Methods in Molecular Biology, vol 2443. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2067-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2067-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2066-3

  • Online ISBN: 978-1-0716-2067-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics