Skip to main content

Targeted Formation of 8-Oxoguanine in Telomeres

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

Abstract

Mammalian telomeres are guanine-rich sequences which cap the ends of linear chromosomes. While recognized as sites sensitive to oxidative stress, studies on the consequences of oxidative damage to telomeres have been primarily limited to experimental conditions which cause oxidative damage throughout the whole genome and cell. We developed a chemoptogenetic tool (FAP-mCER-TRF1) to specifically induce singlet oxygen at telomeres, resulting in the formation of the common oxidative lesion 8-oxo-guanine. Here, we describe this tool and detail how to generate cell lines which express FAP-mCER-TRF1 at telomeres and verify the formation of 8-oxo-guanine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198. https://doi.org/10.1038/nature02118

    Article  CAS  PubMed  Google Scholar 

  2. de Lange T (2018) Shelterin-mediated telomere protection. Annu Rev Genet 52:223–247. https://doi.org/10.1146/annurev-genet-032918-021921

    Article  CAS  PubMed  Google Scholar 

  3. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344. https://doi.org/10.1016/s0968-0004(02)02110-2

    Article  Google Scholar 

  4. Barnes RP, Fouquerel E, Opresko PL (2019) The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev 177:37–45. https://doi.org/10.1016/j.mad.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed W, Lingner J (2017) Impact of oxidative stress on telomere biology. Differentiation 99:21–27. https://doi.org/10.1016/j.diff.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP et al (2016) Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev 25:55–69. https://doi.org/10.1016/j.arr.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  7. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214. https://doi.org/10.1096/fj.02-0752rev

    Article  CAS  PubMed  Google Scholar 

  8. Fouquerel E, Barnes RP, Uttam S, Watkins SC, Bruchez MP, Opresko PL (2019) Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol Cell 75(1):117–30 e6. https://doi.org/10.1016/j.molcel.2019.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He J, Wang Y, Missinato MA, Onuoha E, Perkins LA, Watkins SC et al (2016) A genetically targetable near-infrared photosensitizer. Nat Methods 13(3):263–268. https://doi.org/10.1038/nmeth.3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agnez-Lima LF, Melo JT, Silva AE, Oliveira AH, Timoteo AR, Lima-Bessa KM et al (2012) DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res Rev Mutat Res 751(1):15–28. https://doi.org/10.1016/j.mrrev.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  11. Liang P, Kolodieznyi D, Creeger Y, Ballou B, Bruchez MP (2020) Subcellular singlet oxygen and cell death: location matters. Front Chem 8:592941. https://doi.org/10.3389/fchem.2020.592941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie W, Jiao B, Bai Q, Ilin VA, Sun M, Burton CE et al (2020) Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity. elife 9:e51845. https://doi.org/10.7554/eLife.51845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jenkins FJ, Kerr CM, Fouquerel E, Bovbjerg DH, Opresko PL (2017) Modified terminal restriction fragment analysis for quantifying telomere length using in-gel hybridization. J Vis Exp (125):56001. https://doi.org/10.3791/56001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L. Opresko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barnes, R.P., Thosar, S.A., Fouquerel, E., Opresko, P.L. (2022). Targeted Formation of 8-Oxoguanine in Telomeres. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics