Skip to main content

Use of High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) to Quantify Modified Nucleosides

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

Abstract

Physiological and chemically induced modifications to nucleosides are common in both DNA and RNA. Physiological forms of these modifications play critical roles in gene expression, yet aberrant marks, if left unrepaired, may be associated with increased genome instability. Due to the low prevalence of these marks in most samples of interest, a highly sensitive method is needed for their detection and quantitation. High-performance liquid chromatography, coupled to mass spectrometry (HPLC-MS), provides this high degree of sensitivity while also being adaptable to nearly any modified nucleoside of interest and still maintaining exquisite specificity. In this chapter, we demonstrate how to use HPLC-MS to analyze the catalytic activity of a nucleic acid demethylase, to quantify the prevalence of N6-methyladenosine from RNA, and to determine the kinetics of alkylation damage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734

    Article  CAS  Google Scholar 

  2. Shen L et al (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614

    Article  CAS  Google Scholar 

  3. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  Google Scholar 

  4. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517

    Article  CAS  Google Scholar 

  5. Liu J et al (2014) A METTL3–METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation. Nat Chem Biol 10(2):93–95

    Article  CAS  Google Scholar 

  6. Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  Google Scholar 

  7. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  CAS  Google Scholar 

  8. Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24(17):1832–1860

    Article  Google Scholar 

  9. Rošić S et al (2018) Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat Genet 50(3):452–459

    Article  Google Scholar 

  10. Strauss B, Scudiero D, Henderson E (1975) The nature of the alkylation lesion in mammalian cells. In: Molecular mechanisms for repair of DNA. Springer, Boston, MA, pp 13–24

    Chapter  Google Scholar 

  11. Li X et al (2017) Base-resolution mapping reveals distinct m1A methylome in nuclear-and mitochondrial-encoded transcripts. Mol Cell 68(5):993–1005

    Article  CAS  Google Scholar 

  12. Xu L et al (2017) Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem 292(35):14695–14703

    Article  CAS  Google Scholar 

  13. Zhang L-H et al (2020) The SUMOylated METTL8 induces R-loop and tumorigenesis via m3C. iScience 23(3):100968

    Article  CAS  Google Scholar 

  14. Fu D, Calvo J, Samson L (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12:104–120. https://doi.org/10.1038/nrc3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aas P, Otterlei M, Falnes P et al (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863. https://doi.org/10.1038/nature01363

    Article  CAS  PubMed  Google Scholar 

  16. Drabløs F et al (2004) Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair 3(11):1389–1407

    Article  Google Scholar 

  17. Dango S, Mosammaparast N, Sowa ME, Xiong L-J, Wu F, Park K, Rubin M, Gygi S, Harper JW, Shi Y (2011) DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell 44:373–384

    Article  CAS  Google Scholar 

  18. Barciszewska AM, Murawa D et al (2007) Analysis of 5-methylcytosine in DNA of breast and colon cancer tissues. IUBMB Life 59(12):765–770. https://doi.org/10.1080/15216540701697412

    Article  CAS  PubMed  Google Scholar 

  19. Michalak M, Plitta-Michalak BP et al (2015) Global 5-methylcytosine alterations in DNA during ageing of Quercus robur seeds. Ann Bot 116(3):369–376. https://doi.org/10.1093/aob/mcv104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azimzadeh P, Asadzadeh Aghdaei H, Tarban P, Akhondi MM, Shirazi A, Khorram Khorshid HR (2016) Comparison of three methods for mitochondria isolation from human liver cell line (HepG2). Gastroenterol Hepatol Bed Bench 9(2):105–113

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported the by the NIH (R01 CA193318, R01 CA227001, and P01 CA092584), the American Cancer Society research scholar program (RSG-18-156-01-DMC), and the Alvin J. Siteman Cancer Center Investment Program, which is supported by the Foundation for Barnes-Jewish Hospital Cancer Frontier Fund and the National Cancer Institute, Cancer Support Grant P30 CA091842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Mosammaparast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodell, R., Tsao, N., Ganguly, A., Mosammaparast, N. (2022). Use of High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) to Quantify Modified Nucleosides. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics