Skip to main content

Approaches to Monitor Termination of DNA Replication Using Xenopus Egg Extracts

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

Abstract

DNA replication is crucial for cell viability and genome integrity. Despite its crucial role in genome duplication, the final stage of DNA replication, which is termed termination, is relatively unexplored. Our knowledge of termination is limited by cellular approaches to study DNA replication, which cannot readily detect termination. In contrast, the Xenopus laevis egg extract system allows for all of DNA replication to be readily detected. Here we describe the use of this system and assays to monitor replication termination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 11 May 2022

    The chapter was inadvertently published with the Acknowledgment section excluded in the chapter.

References

  1. Dewar JM, Walter JC (2017) Mechanisms of DNA replication termination. Nat Rev Mol Cell Biol 18(8):507–516. https://doi.org/10.1038/nrm.2017.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science (New York, NY) 346(6208):1253596. https://doi.org/10.1126/science.1253596

    Article  CAS  Google Scholar 

  3. Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ, Gartner A, Gambus A, Labib K (2017) CUL-2(LRR-1) and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat Cell Biol 19(5):468–479. https://doi.org/10.1038/ncb3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deegan TD, Baxter J, Ortiz Bazan MA, Yeeles JTP, Labib KPM (2019) Pif1-family helicases support fork convergence during DNA replication termination in eukaryotes. Mol Cell 74(2):231–244.e9. https://doi.org/10.1016/j.molcel.2019.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K, Pellman D, Walter JC (2019) Mitotic CDK promotes replisome disassembly, fork breakage, and complex DNA rearrangements. Mol Cell 73(5):915–929.e6. https://doi.org/10.1016/j.molcel.2018.12.021

  6. Heintzman DR, Campos LV, Byl JAW, Osheroff N, Dewar JM (2019) Topoisomerase II is crucial for fork convergence during vertebrate replication termination. Cell Rep 29(2):422–436.e425. https://doi.org/10.1016/j.celrep.2019.08.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walter J, Sun L, Newport J (1998) Regulated chromosomal DNA replication in the absence of a nucleus. Mol Cell 1(4):519–529

    Article  CAS  Google Scholar 

  8. Dewar JM, Budzowska M, Walter JC (2015) The mechanism of DNA replication termination in vertebrates. Nature 525(7569):345–350. https://doi.org/10.1038/nature14887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dewar JM, Low E, Mann M, Raschle M, Walter JC (2017) CRL2(Lrr1) promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 31(3):275–290. https://doi.org/10.1101/gad.291799.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Low E, Chistol G, Zaher MS, Kochenova OV, Walter JC (2020) The DNA replication fork suppresses CMG unloading from chromatin before termination. Genes Dev 34(21–22):1534–1545. https://doi.org/10.1101/gad.339739.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blow JJ (2001) Control of chromosomal DNA replication in the early Xenopus embryo. EMBO J 20(13):3293–3297. https://doi.org/10.1093/emboj/20.13.3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prokhorova TA, Mowrer K, Gilbert CH, Walter JC (2003) DNA replication of mitotic chromatin in Xenopus egg extracts. Proc Natl Acad Sci U S A 100(23):13241–13246. https://doi.org/10.1073/pnas.2336104100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walter JC (2000) Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem 275(50):39773–39778. https://doi.org/10.1074/jbc.M008107200

    Article  CAS  PubMed  Google Scholar 

  14. Arias EE, Walter JC (2005) Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev 19(1):114–126. https://doi.org/10.1101/gad.1255805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pozo PN, Cook JG (2016) Regulation and function of Cdt1; a key factor in cell proliferation and genome stability. Genes (Basel) 8(1):2. https://doi.org/10.3390/genes8010002

    Article  CAS  Google Scholar 

  16. Moreno SP, Bailey R, Campion N, Herron S, Gambus A (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science (New York, NY) 346(6208):477–481. https://doi.org/10.1126/science.1253585

    Article  CAS  Google Scholar 

  17. Lebofsky R, Takahashi T, Walter JC (2009) DNA replication in nucleus-free Xenopus egg extracts. Methods Mol Biol 521:229–252. https://doi.org/10.1007/978-1-60327-815-7_13

    Article  CAS  PubMed  Google Scholar 

  18. Gillespie PJ, Gambus A, Blow JJ (2012) Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods 57(2):203–213. https://doi.org/10.1016/j.ymeth.2012.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duxin JP, Dewar JM, Yardimci H, Walter JC (2014) Repair of a DNA-protein crosslink by replication-coupled proteolysis. Cell 159(2):346–357. https://doi.org/10.1016/j.cell.2014.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Räschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Schärer OD, Walter JC (2008) Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134(6):969–980. https://doi.org/10.1016/j.cell.2008.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vrtis KB, Dewar JM, Chistol G, Wu RA, Graham TGW, Walter JC (2021) Single-strand DNA breaks cause replisome disassembly. Mol Cell 81(6):1309–1318.e1306. https://doi.org/10.1016/j.molcel.2020.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walter J, Newport J (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 5(4):617–627

    Article  CAS  Google Scholar 

  23. Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC (2010) Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 40(5):834–840. https://doi.org/10.1016/j.molcel.2010.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

JMD is supported by NIH grant R35GM128696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Dewar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kavlashvili, T., Dewar, J.M. (2022). Approaches to Monitor Termination of DNA Replication Using Xenopus Egg Extracts. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics