Skip to main content

Studying Single-Stranded DNA Gaps at Replication Intermediates by Electron Microscopy

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

Abstract

Single-stranded DNA gaps are frequent structures that accumulate on newly synthesized DNA under conditions of replication stress. The identification of these single-stranded DNA gaps has been instrumental to uncover the mechanisms that allow the DNA replication machinery to skip intrinsic replication obstacles or DNA lesions. DNA fiber assays provide an essential tool for detecting perturbations in DNA replication fork dynamics genome-wide at single molecule resolution along with identifying the presence of single-stranded gaps when used in combination with S1 nuclease. However, electron microscopy is the only technique allowing the actual visualization and localization of single-stranded DNA gaps on replication forks. This chapter provides a detailed method for visualizing single-stranded DNA gaps at the replication fork by electron microscopy including psoralen cross-linking of cultured mammalian cells, extraction of genomic DNA, and finally enrichment of replication intermediates followed by spreading and platinum rotary shadowing of the DNA onto grids. Discussion on identification and analysis of these gaps as well as on the advantages and disadvantages of electron microscopy relative to the DNA fiber technique is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Diamant N, Hendel A, Vered I, Carell T, Reissner T, de Wind N, Geacinov N, Livneh Z (2012) DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity. Nucleic Acids Res 40(1):170–180. https://doi.org/10.1093/nar/gkr596

    Article  CAS  PubMed  Google Scholar 

  2. Elvers I, Johansson F, Groth P, Erixon K, Helleday T (2011) UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res 39(16):7049–7057. https://doi.org/10.1093/nar/gkr420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jansen JG, Tsaalbi-Shtylik A, Hendriks G, Verspuy J, Gali H, Haracska L, de Wind N (2009) Mammalian polymerase zeta is essential for post-replication repair of UV-induced DNA lesions. DNA Repair (Amst) 8(12):1444–1451. https://doi.org/10.1016/j.dnarep.2009.09.006

    Article  CAS  Google Scholar 

  4. Lehmann AR (1972) Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur J Biochem 31(3):438–445. https://doi.org/10.1111/j.1432-1033.1972.tb02550.x

    Article  CAS  PubMed  Google Scholar 

  5. Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21(1):15–27. https://doi.org/10.1016/j.molcel.2005.11.015

    Article  CAS  PubMed  Google Scholar 

  6. Meneghini R (1976) Gaps in DNA synthesized by ultraviolet light-irradiated WI38 human cells. Biochim Biophys Acta 425(4):419–427. https://doi.org/10.1016/0005-2787(76)90006-x

    Article  CAS  PubMed  Google Scholar 

  7. Quinet A, Vessoni AT, Rocha CR, Gottifredi V, Biard D, Sarasin A, Menck CF, Stary A (2014) Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome. DNA Repair (Amst) 14:27–38. https://doi.org/10.1016/j.dnarep.2013.12.005

    Article  CAS  Google Scholar 

  8. Bianchi J, Rudd SG, Jozwiakowski SK, Bailey LJ, Soura V, Taylor E, Stevanovic I, Green AJ, Stracker TH, Lindsay HD, Doherty AJ (2013) PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52(4):566–573. https://doi.org/10.1016/j.molcel.2013.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Gómez S, Reyes A, Martínez-Jiménez MI, Chocrón ES, Mourón S, Terrados G, Powell C, Salido E, Méndez J, Holt IJ, Blanco L (2013) PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52(4):541–553. https://doi.org/10.1016/j.molcel.2013.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mourón S, Rodriguez-Acebes S, Martínez-Jiménez MI, García-Gómez S, Chocrón S, Blanco L, Méndez J (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 20(12):1383–1389. https://doi.org/10.1038/nsmb.2719

    Article  CAS  PubMed  Google Scholar 

  11. Wan L, Lou J, Xia Y, Su B, Liu T, Cui J, Sun Y, Lou H, Huang J (2013) hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep 14(12):1104–1112. https://doi.org/10.1038/embor.2013.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265(5181):2096–2098. https://doi.org/10.1126/science.7522347

    Article  CAS  PubMed  Google Scholar 

  13. Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140(6):1285–1295. https://doi.org/10.1083/jcb.140.6.1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279(19):20067–20075. https://doi.org/10.1074/jbc.M400022200

    Article  CAS  PubMed  Google Scholar 

  15. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, van Slegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277(5331):1518–1523. https://doi.org/10.1126/science.277.5331.1518

    Article  CAS  PubMed  Google Scholar 

  16. Parra I, Windle B (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet 5(1):17–21. https://doi.org/10.1038/ng0993-17

    Article  CAS  PubMed  Google Scholar 

  17. Techer H, Koundrioukoff S, Azar D, Wilhelm T, Carignon S, Brison O, Debatisse M, Le Tallec B (2013) Replication dynamics: biases and robustness of DNA fiber analysis. J Mol Biol 425(23):4845–4855. https://doi.org/10.1016/j.jmb.2013.03.040

    Article  CAS  PubMed  Google Scholar 

  18. Vogt VM (1973) Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem 33(1):192–200. https://doi.org/10.1111/j.1432-1033.1973.tb02669.x

    Article  CAS  PubMed  Google Scholar 

  19. Quinet A, Carvajal-Maldonado D, Lemacon D, Vindigni A (2017) DNA fiber analysis: mind the gap! Methods Enzymol 591:55–82. https://doi.org/10.1016/bs.mie.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  20. Neelsen KJ, Chaudhuri AR, Follonier C, Herrador R, Lopes M (2014) Visualization and interpretation of eukaryotic DNA replication intermediates in vivo by electron microscopy. Methods Mol Biol 1094:177–208. https://doi.org/10.1007/978-1-62703-706-8_15

    Article  CAS  PubMed  Google Scholar 

  21. Neelsen KJ, Lopes M (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 16(4):207–220. https://doi.org/10.1038/nrm3935

    Article  CAS  PubMed  Google Scholar 

  22. Vindigni A, Lopes M (2017) Combining electron microscopy with single molecule DNA fiber approaches to study DNA replication dynamics. Biophys Chem 225:3–9. https://doi.org/10.1016/j.bpc.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  23. Lopes M (2009) Electron microscopy methods for studying in vivo DNA replication intermediates. Methods Mol Biol 521:605–631. https://doi.org/10.1007/978-1-60327-815-7_34

    Article  CAS  PubMed  Google Scholar 

  24. Vollenweider HJ, Sogo JM, Koller T (1975) A routine method for protein-free spreading of double- and single-stranded nucleic acid molecules. Proc Natl Acad Sci U S A 72(1):83–87. https://doi.org/10.1073/pnas.72.1.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mijic S, Zellweger R, Chappidi N, Berti M, Jacobs K, Mutreja K, Ursich S, Ray Chaudhuri A, Nussenzweig A, Janscak P, Lopes M (2017) Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun 8(1):859. https://doi.org/10.1038/s41467-017-01164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17(11):1305–1311. https://doi.org/10.1038/nsmb.1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Alice Meroni and Annabel Quinet for their help with the preparation of the figures and for their comments on the manuscript. This work was supported by the NCI under grant numbers R01CA237263 and R01CA248526 and by the DOD BCRP Expansion Award BC191374 to A.V. This research was supported by the Alvin J. Siteman Cancer Center Siteman Investment Program (supported by The Foundation for Barnes-Jewish Hospital, Cancer Frontier Fund) and the Barnard Foundation to A.V. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Vindigni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jackson, J., Vindigni, A. (2022). Studying Single-Stranded DNA Gaps at Replication Intermediates by Electron Microscopy. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics