Skip to main content

Assessing DNA Damage Responses Using B Lymphocyte Cultures

  • Protocol
  • First Online:
DNA Damage Responses

Abstract

Development of B cells requires the programmed generation and repair of double-stranded DNA breaks in antigen receptor genes. Investigation of the cellular responses to these DNA breaks has established important insights into B cell development and, more broadly, has provided fundamental advances into the molecular mechanisms of DNA damage response pathways. Abelson transformed pre-B cell lines and primary pre-B cell cultures are malleable experimental systems with diverse applications for studying DNA damage responses. This chapter describes methods for generating these cellular systems, inducing and quantifying DSBs, and assessing DNA damage programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166. https://doi.org/10.1126/science.1140321

    Article  CAS  PubMed  Google Scholar 

  3. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210. https://doi.org/10.1038/nrm3546

    Article  CAS  PubMed  Google Scholar 

  4. Alt FW, Zhang Y, Meng FL, Guo C, Schwer B (2013) Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152(3):417–429. https://doi.org/10.1016/j.cell.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Helmink BA, Sleckman BP (2012) The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol 30:175–202. https://doi.org/10.1146/annurev-immunol-030409-101320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109(Suppl):S45–S55. https://doi.org/10.1016/s0092-8674(02)00675-x

    Article  CAS  PubMed  Google Scholar 

  7. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG (2000) The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 18:495–527. https://doi.org/10.1146/annurev.immunol.18.1.495

    Article  CAS  PubMed  Google Scholar 

  8. Muljo SA, Schlissel MS (2003) A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol 4(1):31–37. https://doi.org/10.1038/ni870

    Article  CAS  PubMed  Google Scholar 

  9. Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC et al (2006) ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442(7101):466–470. https://doi.org/10.1038/nature04866

    Article  CAS  PubMed  Google Scholar 

  10. Bredemeyer AL, Helmink BA, Innes CL, Calderon B, McGinnis LM, Mahowald GK et al (2008) DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature 456(7223):819–823. https://doi.org/10.1038/nature07392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rolink A, Kudo A, Karasuyama H, Kikuchi Y, Melchers F (1991) Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo. EMBO J 10(2):327–336

    Article  CAS  Google Scholar 

  12. Bednarski JJ, Nickless A, Bhattacharya D, Amin RH, Schlissel MS, Sleckman BP (2012) RAG-induced DNA double-strand breaks signal through Pim2 to promote pre-B cell survival and limit proliferation. J Exp Med 209(1):11–17. https://doi.org/10.1084/jem.20112078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bednarski JJ, Pandey R, Schulte E, White LS, Chen BR, Sandoval GJ et al (2016) RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals. J Exp Med 213(2):209–223. https://doi.org/10.1084/jem.20151048

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnson K, Hashimshony T, Sawai CM, Pongubala JM, Skok JA, Aifantis I et al (2008) Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28(3):335–345. https://doi.org/10.1016/j.immuni.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  15. Ochiai K, Maienschein-Cline M, Mandal M, Triggs JR, Bertolino E, Sciammas R et al (2012) A self-reinforcing regulatory network triggered by limiting IL-7 activates pre-BCR signaling and differentiation. Nat Immunol 13(3):300–307. https://doi.org/10.1038/ni.2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steinel NC, Lee BS, Tubbs AT, Bednarski JJ, Schulte E, Yang-Iott KS et al (2013) The ataxia telangiectasia mutated kinase controls Igkappa allelic exclusion by inhibiting secondary Vkappa-to-Jkappa rearrangements. J Exp Med 210(2):233–239. https://doi.org/10.1084/jem.20121605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin WC, Desiderio S (1994) Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc Natl Acad Sci U S A 91(7):2733–2737. https://doi.org/10.1073/pnas.91.7.2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soodgupta D, White LS, Yang W, Johnston R, Andrews JM, Kohyama M et al (2019) RAG-mediated DNA breaks attenuate PU.1 activity in early B cells through activation of a SPIC-BCLAF1 complex. Cell Rep 29(4):829–43 e5. https://doi.org/10.1016/j.celrep.2019.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Collins PL, Purman C, Porter SI, Nganga V, Saini A, Hayer KE et al (2020) DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat Commun 11(1):3158. https://doi.org/10.1038/s41467-020-16926-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Purman CE, Collins PL, Porter SI, Saini A, Gupta H, Sleckman BP et al (2019) Regional gene repression by DNA double-strand breaks in G1 phase cells. Mol Cell Biol 39(24):e00181-19. https://doi.org/10.1128/MCB.00181-19

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bednarski JJ, Sleckman BP (2019) At the intersection of DNA damage and immune responses. Nat Rev Immunol 19(4):231–242. https://doi.org/10.1038/s41577-019-0135-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Difilippantonio S, Gapud E, Wong N, Huang CY, Mahowald G, Chen HT et al (2008) 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456(7221):529–533. https://doi.org/10.1038/nature07476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gapud EJ, Sleckman BP (2011) Unique and redundant functions of ATM and DNA-PKcs during V(D)J recombination. Cell Cycle 10(12):1928–1935. https://doi.org/10.4161/cc.10.12.16011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tubbs AT, Dorsett Y, Chan E, Helmink B, Lee BS, Hung P et al (2014) KAP-1 promotes resection of broken DNA ends not protected by gamma-H2AX and 53BP1 in G(1)-phase lymphocytes. Mol Cell Biol 34(15):2811–2821. https://doi.org/10.1128/MCB.00441-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Helmink BA, Tubbs AT, Dorsett Y, Bednarski JJ, Walker LM, Feng Z et al (2011) H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469(7329):245–249. https://doi.org/10.1038/nature09585

    Article  CAS  PubMed  Google Scholar 

  26. Lescale C, Abramowski V, Bedora-Faure M, Murigneux V, Vera G, Roth DB et al (2016) RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat Commun 7:10529. https://doi.org/10.1038/ncomms10529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lescale C, Lenden Hasse H, Blackford AN, Balmus G, Bianchi JJ, Yu W et al (2016) Specific roles of XRCC4 paralogs PAXX and XLF during V(D)J recombination. Cell Rep 16(11):2967–2979. https://doi.org/10.1016/j.celrep.2016.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hung PJ, Johnson B, Chen BR, Byrum AK, Bredemeyer AL, Yewdell WT et al (2018) MRI is a DNA damage response adaptor during classical non-homologous end joining. Mol Cell 71(2):332–42 e8. https://doi.org/10.1016/j.molcel.2018.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Savic V, Yin B, Maas NL, Bredemeyer AL, Carpenter AC, Helmink BA et al (2009) Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol Cell 34(3):298–310. https://doi.org/10.1016/j.molcel.2009.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ba Z, Lou J, Ye AY, Dai HQ, Dring EW, Lin SG et al (2020) CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 586(7828):305–310. https://doi.org/10.1038/s41586-020-2578-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Quan N (2015) Immune cell isolation from mouse femur bone marrow. Bio Protoc 5(20):e1631. https://doi.org/10.21769/bioprotoc.1631

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

RJ is supported by a training grant through the Alvin J. Siteman Cancer Center. JJB is supported by National Institutes of Health grant R56 AI153234, an American Society of Hematology Scholar Award, the Children’s Discovery Institute at St. Louis Children’s Hospital and Washington University School of Medicine, the St. Louis Children’s Hospital Foundation, and the Gabrielle’s Angel Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Bednarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnston, R., White, L.S., Bednarski, J.J. (2022). Assessing DNA Damage Responses Using B Lymphocyte Cultures. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics