Skip to main content

A Whole Genome CRISPR/Cas9 Screening Approach for Identifying Genes Encoding DNA End-Processing Proteins

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

  • 1125 Accesses

Abstract

DNA double-strand breaks (DSBs) are mainly repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of HR or NHEJ is dictated in part by whether the broken DNA ends are resected to generate extended single-stranded DNA (ssDNA) overhangs, which are quickly bound by the trimeric ssDNA binding complex RPA, the first step of HR. Here we describe a series of protocols for generating Abelson murine leukemia virus-transformed pre-B cells (abl pre-B cells) with stably integrated inducible Cas9 that can be used to identify and study novel pathways regulating DNA end processing. These approaches involve gene inactivation by CRISPR/Cas9, whole genome guide RNA (gRNA) library-mediated screen, and flow cytometry-based detection of chromatin-bound RPA after DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prakash R, Zhang Y, Feng W, Jasin M (2015) Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7(4):a016600. https://doi.org/10.1101/cshperspect.a016600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506. https://doi.org/10.1038/nrm.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271. https://doi.org/10.1146/annurev-genet-110410-132435

    Article  CAS  PubMed  Google Scholar 

  4. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mirman Z, de Lange T (2020) 53BP1: a DSB escort. Genes Dev 34(1–2):7–23. https://doi.org/10.1101/gad.333237.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Setiaputra D, Durocher D (2019) Shieldin—the protector of DNA ends. EMBO Rep 20(5):e47560. https://doi.org/10.15252/embr.201847560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141(2):243–254. https://doi.org/10.1016/j.cell.2010.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. https://doi.org/10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Unniyampurath U, Pilankatta R, Krishnan MN (2016) RNA interference in the age of CRISPR: will CRISPR interfere with RNAi? Int J Mol Sci 17(3):291. https://doi.org/10.3390/ijms17030291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  13. Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15(9):591–600. https://doi.org/10.1038/nrm3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenberg N, Kincade PW (1994) B-lineage differentiation in normal and transformed cells and the microenvironment that supports it. Curr Opin Immunol 6(2):203–211. https://doi.org/10.1016/0952-7915(94)90093-0

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg N, Baltimore D, Scher CD (1975) In vitro transformation of lymphoid cells by Abelson murine leukemia virus. Proc Natl Acad Sci U S A 72(5):1932–1936. https://doi.org/10.1073/pnas.72.5.1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, Nuskey B, Sullivan KE, Pandita TK, Bassing CH, Sleckman BP (2006) ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442(7101):466–470. https://doi.org/10.1038/nature04866

    Article  CAS  PubMed  Google Scholar 

  17. Muljo SA, Schlissel MS (2003) A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat Immunol 4(1):31–37. https://doi.org/10.1038/ni870

    Article  CAS  PubMed  Google Scholar 

  18. Helmink BA, Sleckman BP (2012) The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol 30:175–202. https://doi.org/10.1146/annurev-immunol-030409-101320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schatz DG, Swanson PC (2011) V(D)J recombination: mechanisms of initiation. Annu Rev Genet 45:167–202. https://doi.org/10.1146/annurev-genet-110410-132552

    Article  CAS  PubMed  Google Scholar 

  20. Hung PJ, Johnson B, Chen BR, Byrum AK, Bredemeyer AL, Yewdell WT, Johnson TE, Lee BJ, Deivasigamani S, Hindi I, Amatya P, Gross ML, Paull TT, Pisapia DJ, Chaudhuri J, Petrini JJH, Mosammaparast N, Amarasinghe GK, Zha S, Tyler JK, Sleckman BP (2018) MRI is a DNA damage response adaptor during classical non-homologous end joining. Mol Cell 71(2):332–342 e338. https://doi.org/10.1016/j.molcel.2018.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hung PJ, Chen BR, George R, Liberman C, Morales AJ, Colon-Ortiz P, Tyler JK, Sleckman BP, Bredemeyer AL (2017) Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes. Cell Cycle 16(3):286–295. https://doi.org/10.1080/15384101.2016.1253640

    Article  CAS  PubMed  Google Scholar 

  22. Tubbs AT, Dorsett Y, Chan E, Helmink B, Lee BS, Hung P, George R, Bredemeyer AL, Mittal A, Pappu RV, Chowdhury D, Mosammaparast N, Krangel MS, Sleckman BP (2014) KAP-1 promotes resection of broken DNA ends not protected by gamma-H2AX and 53BP1 in G(1)-phase lymphocytes. Mol Cell Biol 34(15):2811–2821. https://doi.org/10.1128/MCB.00441-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dorsett Y, Zhou Y, Tubbs AT, Chen BR, Purman C, Lee BS, George R, Bredemeyer AL, Zhao JY, Sodergen E, Weinstock GM, Han ND, Reyes A, Oltz EM, Dorsett D, Misulovin Z, Payton JE, Sleckman BP (2014) HCoDES reveals chromosomal DNA end structures with single-nucleotide resolution. Mol Cell 56(6):808–818. https://doi.org/10.1016/j.molcel.2014.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Helmink BA, Tubbs AT, Dorsett Y, Bednarski JJ, Walker LM, Feng Z, Sharma GG, McKinnon PJ, Zhang J, Bassing CH, Sleckman BP (2011) H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469(7329):245–249. https://doi.org/10.1038/nature09585

    Article  CAS  PubMed  Google Scholar 

  25. Forment JV, Walker RV, Jackson SP (2012) A high-throughput, flow cytometry-based method to quantify DNA-end resection in mammalian cells. Cytometry A 81(10):922–928. https://doi.org/10.1002/cyto.a.22155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

B.P.S. is supported by National Institutes of Health grants R01 AI047829 and R01 AI074953.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ruei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, BR., Sleckman, B.P. (2022). A Whole Genome CRISPR/Cas9 Screening Approach for Identifying Genes Encoding DNA End-Processing Proteins. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics