Skip to main content

In Vitro Reconstitution of BRCA1-BARD1/RAD51-Mediated Homologous DNA Pairing

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

Abstract

RAD51-mediated homologous recombination (HR) is a conserved mechanism for the repair of DNA double-strand breaks and the maintenance of DNA replication forks. Several breast and ovarian tumor suppressors, including BRCA1 and BARD1, have been implicated in HR since their discovery in the 1990s. However, a holistic understanding of how they participate in HR has been hampered by the immense challenge of expressing and purifying these large and unstable protein complexes for mechanistic analysis. Recently, we have overcome such a challenge for the BRCA1-BARD1 complex, allowing us to demonstrate its pivotal role in HR via the promotion of RAD51-mediated DNA strand invasion. In this chapter, we describe detailed procedures for the expression and purification of the BRCA1-BARD1 complex and in vitro assays using this tumor suppressor complex to examine its ability to promote RAD51-mediated homologous DNA pairing. This includes two distinct biochemical assays, namely, D-loop formation and synaptic complex assembly. These methods are invaluable for studying the BRCA1-BARD1 complex and its functional interplay with other factors in the HR process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Symington LS (2014) DNA repair: making the cut. Nature 514(7520):39–40

    Article  CAS  Google Scholar 

  2. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  CAS  Google Scholar 

  3. Zhao W, Wiese C, Kwon Y et al (2019) The BRCA tumor suppressor network in chromosome damage repair by homologous recombination. Annu Rev Biochem 88:221–245

    Article  CAS  Google Scholar 

  4. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5(11):a012740

    Article  Google Scholar 

  5. Prakash R, Zhang Y, Feng W et al (2015) Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7(4):a016600

    Article  Google Scholar 

  6. Hall JM, Lee MK, Newman B et al (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250(4988):1684–1689

    Article  CAS  Google Scholar 

  7. Futreal PA, Liu Q, Shattuck-Eidens D et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266(5182):120–122

    Article  CAS  Google Scholar 

  8. Godwin AK, Vanderveer L, Schultz DC et al (1994) A common region of deletion on chromosome 17q in both sporadic and familial epithelial ovarian tumors distal to BRCA1. Am J Hum Genet 55(4):666–677

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71

    Article  CAS  Google Scholar 

  10. Petrucelli N, Daly MB, Pal T (2016) BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  11. Christou CM, Kyriacou K (2013) BRCA1 and its network of interacting partners. Biology (Basel) 2(1):40–63

    CAS  Google Scholar 

  12. Wu LC, Wang ZW, Tsan JT et al (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14(4):430–440

    Article  CAS  Google Scholar 

  13. Wu W, Koike A, Takeshita T et al (2008) The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div 3:1

    Article  CAS  Google Scholar 

  14. Zhao W, Steinfeld JB, Liang F et al (2017) BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 550(7676):360–365

    Article  CAS  Google Scholar 

  15. Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22(1):106–116

    Article  CAS  Google Scholar 

  16. Hatchi E, Skourti-Stathaki K, Ventz S et al (2015) BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 57(4):636–647

    Article  CAS  Google Scholar 

  17. Silver DP, Livingston DM (2012) Mechanisms of BRCA1 tumor suppression. Cancer Discov 2(8):679–684

    Article  CAS  Google Scholar 

  18. Scully R, Chen J, Plug A et al (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88(2):265–275

    Article  CAS  Google Scholar 

  19. Moynahan ME, Chiu JW, Koller BH et al (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4(4):511–518

    Article  CAS  Google Scholar 

  20. Caestecker KW, Van de Walle GR (2013) The role of BRCA1 in DNA double-strand repair: past and present. Exp Cell Res 319(5):575–587

    Article  CAS  Google Scholar 

  21. Ray Chaudhuri A, Callen E, Ding X et al (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535(7612):382–387

    Article  Google Scholar 

  22. Willis NA, Chandramouly G, Huang B et al (2014) BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature 510(7506):556–559

    Article  CAS  Google Scholar 

  23. Savage KI, Gorski JJ, Barros EM et al (2014) Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol Cell 54(3):445–459

    Article  CAS  Google Scholar 

  24. Kawai S, Amano A (2012) BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 197(2):201–208

    Article  CAS  Google Scholar 

  25. Kleiman FE, Manley JL (1999) Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 285(5433):1576–1579

    Article  CAS  Google Scholar 

  26. Kleiman FE, Manley JL (2001) The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 104(5):743–753

    Article  CAS  Google Scholar 

  27. Roy R, Chun J, Powell SN (2012) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12(1):68–78

    Article  CAS  Google Scholar 

  28. Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34(5):1416–1426

    Article  CAS  Google Scholar 

  29. Paull TT, Cortez D, Bowers B et al (2001) Direct DNA binding by Brca1. Proc Natl Acad Sci U S A 98(11):6086–6091

    Article  CAS  Google Scholar 

  30. Masuda T, Xu X, Dimitriadis EK et al (2016) “DNA binding region” of BRCA1 affects genetic stability through modulating the intra-S-phase checkpoint. Int J Biol Sci 12(2):133–143

    Article  CAS  Google Scholar 

  31. Daza-Martin M, Starowicz K, Jamshad M et al (2019) Isomerization of BRCA1-BARD1 promotes replication fork protection. Nature 571(7766):521–527

    Article  CAS  Google Scholar 

  32. Sigurdsson S, Trujillo K, Song B et al (2001) Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J Biol Chem 276(12):8798–8806

    Article  CAS  Google Scholar 

  33. Anand R, Pinto C, Cejka P (2018) Methods to study DNA end resection I: recombinant protein purification. Methods Enzymol 600:25–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Zhao laboratory (O’Taveon Fitzgerald, Wenjing Li and Yuxin Huang) for critical reading on the manuscript and Dr. Jeffrey D. Parvin for providing the pFastBac-Flag-BRCA1 and pFastbac-BARD1 plasmids. This work was supported by foundation grants (V Scholar V2019.Q13 from V Foundation for Cancer Research and Young Investigator Award from Max and Minnie Tomerlin Voelcker Fund) and startup funds from University of Texas Health Science Center at San Antonio (all to W.Z.). C.M.R. is supported by a T32 (AG 021890) through the UT Health San Antonio Biology of Aging program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, M., Rogers, C.M., Alimbetov, D., Zhao, W. (2022). In Vitro Reconstitution of BRCA1-BARD1/RAD51-Mediated Homologous DNA Pairing. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics