Skip to main content

Monitoring Nuclease Activity by X-Ray Scattering Interferometry Using Gold Nanoparticle-Conjugated DNA

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

Abstract

The biologically critical, exquisite specificity and efficiency of nucleases, such as those acting in DNA repair and replication, often emerge in the context of multiple other macromolecules. The evolved complexity also makes biologically relevant nuclease assays challenging and low-throughput. Meiotic recombination 11 homolog 1 (MRE11) is an exemplary nuclease that initiates DNA double-strand break (DSB) repair and processes stalled DNA replication forks. Thus, DNA resection by MRE11 nuclease activity is critical for multiple DSB repair pathways as well as in replication. Traditionally, in vitro nuclease activity of purified enzymes is studied either through gel-based assays or fluorescence-based assays like fluorescence resonance energy transfer (FRET). However, adapting these methods for a high-throughput application such as inhibitor screening can be challenging. Gel-based approaches are slow, and FRET assays can suffer from interference and distance limitations. Here we describe an alternative methodology to monitor nuclease activity by measuring the small-angle X-ray scattering (SAXS) interference pattern from gold nanoparticles (Au NPs) conjugated to 5′-ends of dsDNA using X-ray scattering interferometry (XSI). In addition to reporting on the enzyme activity, XSI can provide insight into DNA-protein interactions, aiding in the development of inhibitors that trap enzymes on the DNA substrate. Enabled by efficient access to synchrotron beamlines, sample preparation, and the feasibility of high-throughput XSI data collection and processing pipelines, this method allows for far greater speeds with less sample consumption than conventional SAXS techniques. The reported metrics and methods can be generalized to monitor not only other nucleases but also most other DNA-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Syed A, Tainer JA (2018) The MRE11–RAD50–NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem 87:263–294. https://doi.org/10.1146/annurev-biochem-062917-012415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paull TT (2018) 20 years of Mre11 biology: no end in sight. Mol Cell 71:419–427. https://doi.org/10.1016/j.molcel.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  3. Stracker TH, Petrini JHJ (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12:90–103. https://doi.org/10.1038/nrm3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hopfner K-P, Karcher A, Craig L et al (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485. https://doi.org/10.1016/S0092-8674(01)00335-X

    Article  CAS  PubMed  Google Scholar 

  5. Williams RS, Moncalian G, Williams JS et al (2008) Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135:97–109. https://doi.org/10.1016/j.cell.2008.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park YB, Chae J, Kim YC, Cho Y (2011) Crystal structure of human Mre11: understanding tumorigenic mutations. Structure 19:1591–1602. https://doi.org/10.1016/j.str.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  7. Shibata A, Moiani D, Arvai AS et al (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7–18. https://doi.org/10.1016/j.molcel.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  8. Chen C, Hildebrandt N (2020) Resonance energy transfer to gold nanoparticles: NSET defeats FRET. TrAC Trends Anal Chem 123:115748. https://doi.org/10.1016/j.trac.2019.115748

    Article  CAS  Google Scholar 

  9. Hura GL, Menon AL, Hammel M et al (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606–612. https://doi.org/10.1038/nmeth.1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brosey CA, Tainer JA (2019) Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struct Biol 58:197–213. https://doi.org/10.1016/j.sbi.2019.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang HYH, Tainer JA, Hura GL (2017) High resolution distance distributions determined by X-ray and neutron scattering. In: Chaudhuri B, Muñoz IG, Qian S, Urban VS (eds) Biological small angle scattering: techniques, strategies and tips. Springer, Singapore, pp 167–181

    Chapter  Google Scholar 

  12. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441. https://doi.org/10.1146/annurev-biophys-083012-130301

    Article  CAS  PubMed  Google Scholar 

  13. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496:477–481. https://doi.org/10.1038/nature12070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285. https://doi.org/10.1017/S0033583507004635

    Article  CAS  PubMed  Google Scholar 

  15. Rambo RP, Tainer JA (2011) Characterizing flexible and instrinsically unstructured biological macromolecules by SAS using the Porod-Debye Law. Biopolymers 95:559–571. https://doi.org/10.1002/bip.21638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young T (1804) I. The Bakerian Lecture. Experiments and calculations relative to physical optics. Philos Trans R Soc Lond 94:1–16. https://doi.org/10.1098/rstl.1804.0001

    Article  Google Scholar 

  17. Hura GL, Tsai C-L, Claridge SA et al (2013) DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. Proc Natl Acad Sci 110:17308–17313. https://doi.org/10.1073/pnas.1308595110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vainshtein BK, Feigin LA, Lvov YM et al (1980) Determination of the distance between heavy-atom markers in haemoglobin and histidine decarboxylase in solution by small-angle X-ray scattering. FEBS Lett 116:107–110. https://doi.org/10.1016/0014-5793(80)80539-4

    Article  CAS  PubMed  Google Scholar 

  19. Mathew-Fenn RS, Das R, Silverman JA et al (2008) A molecular ruler for measuring quantitative distance distributions. PLoS One 3:e3229. https://doi.org/10.1371/journal.pone.0003229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mathew-Fenn RS, Das R, Harbury PAB (2008) Remeasuring the double helix. Science 322:446–449. https://doi.org/10.1126/science.1158881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mastroianni AJ, Sivak DA, Geissler PL, Alivisatos AP (2009) Probing the conformational distributions of subpersistence length DNA. Biophys J 97:1408–1417. https://doi.org/10.1016/j.bpj.2009.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi X, Herschlag D, Harbury PAB (2013) Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations. Proc Natl Acad Sci 110:E1444–E1451. https://doi.org/10.1073/pnas.1218830110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi X, Beauchamp KA, Harbury PB, Herschlag D (2014) From a structural average to the conformational ensemble of a DNA bulge. Proc Natl Acad Sci 111:E1473–E1480. https://doi.org/10.1073/pnas.1317032111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi X, Huang L, Lilley DMJ et al (2016) The solution structural ensembles of RNA kink-turn motifs and their protein complexes. Nat Chem Biol 12:146–152. https://doi.org/10.1038/nchembio.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zettl T, Mathew RS, Shi X et al (2018) Gold nanocrystal labels provide a sequence–to–3D structure map in SAXS reconstructions. Sci Adv 4:eaar4418. https://doi.org/10.1126/sciadv.aar4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zettl T, Mathew RS, Seifert S et al (2016) Absolute intramolecular distance measurements with angstrom-resolution using anomalous small-angle X-ray scattering. Nano Lett 16:5353–5357. https://doi.org/10.1021/acs.nanolett.6b01160

    Article  CAS  PubMed  Google Scholar 

  27. Claridge SA, Mastroianni AJ, Au YB et al (2008) Enzymatic ligation creates discrete multinanoparticle building blocks for self-assembly. J Am Chem Soc 130:9598–9605. https://doi.org/10.1021/ja8026746

    Article  CAS  PubMed  Google Scholar 

  28. Tubbs JL, Latypov V, Kanugula S et al (2009) Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 459:808–813. https://doi.org/10.1038/nature08076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eckelmann BJ, Bacolla A, Wang H et al (2020) XRCC1 promotes replication restart, nascent fork degradation and mutagenic DNA repair in BRCA2-deficient cells. NAR Cancer 2:zcaa013. https://doi.org/10.1093/narcan/zcaa013

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thapar R, Wang JL, Hammel M et al (2020) Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res 48:10953–10972. https://doi.org/10.1093/nar/gkaa784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zandarashvili L, Langelier M-F, Velagapudi UK et al (2020) Structural basis for allosteric PARP-1 retention on DNA breaks. Science 368:eaax6367. https://doi.org/10.1126/science.aax6367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Houl JH, Ye Z, Brosey CA et al (2019) Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun 10:5654. https://doi.org/10.1038/s41467-019-13508-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bacolla A, Tainer JA, Vasquez KM, Cooper DN (2016) Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res 44:5673–5688. https://doi.org/10.1093/nar/gkw261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bacolla A, Ye Z, Ahmed Z, Tainer JA (2019) Cancer mutational burden is shaped by G4 DNA, replication stress and mitochondrial dysfunction. Prog Biophys Mol Biol 147:47–61. https://doi.org/10.1016/j.pbiomolbio.2019.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seo SH, Bacolla A, Yoo D et al (2020) Replication-based rearrangements are a common mechanism for SNCA duplication in Parkinson’s disease. Mov Disord 35:868–876. https://doi.org/10.1002/mds.27998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Classen S, Hura GL, Holton JM et al (2013) Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the advanced light source. J Appl Crystallogr 46:1–13. https://doi.org/10.1107/S0021889812048698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dyer KN, Hammel M, Rambo RP et al (2014) High-throughput SAXS for the characterization of biomolecules in solution: a practical approach. Methods Mol Biol 1091:245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10:415–421. https://doi.org/10.1107/S0021889877013879

    Article  Google Scholar 

  39. Tully MD, Tarbouriech N, Rambo RP, Hutin S (2021) Analysis of SEC-SAXS data via EFA deconvolution and scatter. J Vis Exp (167):e61578. https://doi.org/10.3791/61578

  40. Hopkins JB, Gillilan RE, Skou S (2017) BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr 50:1545–1553. https://doi.org/10.1107/S1600576717011438

  41. Manalastas-Cantos K, Konarev PV, Hajizadeh NR, et al (2021) ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr 54:343–355. https://doi.org/10.1107/S1600576720013412

Download references

Acknowledgments

The work is supported by R35 CA220430, by the Cancer Prevention Research Institute of Texas (CPRIT-grant#RP180813), and by a Robert A. Welch Chemistry Chair. Efforts to apply SAXS to characterize eukaryotic pathways relevant to human cancers and merge nano- to mesoscale structures are supported in part by National Cancer Institute grants Structural Biology of DNA Repair (SBDR) CA092584. SAXS data was collected at the Advanced Light Source (ALS) beamline SIBYLS which is supported by the DOE-BER IDAT DE-AC02-05CH11231 and NIGMS ALS-ENABLE (P30 GM124169 and S10OD018483).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John A. Tainer or Greg L. Hura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rosenberg, D.J., Syed, A., Tainer, J.A., Hura, G.L. (2022). Monitoring Nuclease Activity by X-Ray Scattering Interferometry Using Gold Nanoparticle-Conjugated DNA. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics