Skip to main content

Characterization of DNA-PK-Bound End Fragments Using GLASS-ChIP

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

Abstract

Endonucleolytic cleavage of DNA ends by the human Mre11-Rad50-Nbs1 (MRN) complex occurs in a manner that is promoted by DNA-dependent protein kinase (DNA-PK). A method is described to isolate DNA-PK-bound fragments released from chromatin in human cells using a modified Gentle Lysis and Size Selection chromatin immunoprecipitation (GLASS-ChIP) protocol. This method, combined with real-time PCR or next-generation sequencing, can identify sites of MRN endonucleolytic cutting adjacent to DNA-PK binding sites in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pannunzio NR, Watanabe G, Lieber MR (2018) Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 293:10512–10523. https://doi.org/10.1074/jbc.TM117.000374

    Article  CAS  PubMed  Google Scholar 

  2. Symington LS (2016) Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol 51:195–212. https://doi.org/10.3109/10409238.2016.1172552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740. https://doi.org/10.1101/cshperspect.a012740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paull TT (2018) 20 years of Mre11 biology: no end in sight. Mol Cell 71:419–427. https://doi.org/10.1016/j.molcel.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  5. Wright WD, Shah SS, Heyer W-D (2018) Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 293:10524–10535. https://doi.org/10.1074/jbc.TM118.000372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66:801–817. https://doi.org/10.1016/j.molcel.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  7. Deshpande RA, Myler LR, Soniat MM et al (2020) DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci Adv 6:eaay0922. https://doi.org/10.1126/sciadv.aay0922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones CE, Forsburg SL (2021) Monitoring Schizosaccharomyces pombe genome stress by visualizing end-binding protein Ku. Biology Open 10:bio054346. https://doi.org/10.1242/bio.054346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim J-S, Krasieva TB, Kurumizaka H et al (2005) Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol 170:341–347. https://doi.org/10.1083/jcb.200411083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kochan JA, Desclos ECB, Bosch R et al (2017) Meta-analysis of DNA double-strand break response kinetics. Nucleic Acids Res 45:12625–12637. https://doi.org/10.1093/nar/gkx1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu D, Topper LM, Wilson TE (2008) Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Genetics 178:1237–1249. https://doi.org/10.1534/genetics.107.083535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang G, Liu C, Chen S-H et al (2018) Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res 46:3446–3457. https://doi.org/10.1093/nar/gky088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lobrich M, Shibata A, Beucher A et al (2010) gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9:662–669

    Article  Google Scholar 

  14. Mao Z, Bozzella M, Seluanov A et al (2008) Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst) 7:1765–1771. https://doi.org/10.1016/j.dnarep.2008.06.018

    Article  CAS  Google Scholar 

  15. Iacovoni JS, Caron P, Lassadi I et al (2010) High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29:1446–1457. https://doi.org/10.1038/emboj.2010.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vítor AC, Huertas P, Legube G et al (2020) Studying DNA double-Strand break repair: an ever-growing toolbox. Front Mol Biosci 7:24. https://doi.org/10.3389/fmolb.2020.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, Legube G. (2014) Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol. 21(4):366–374. PMCID: PMC4300393

    Google Scholar 

  18. Zhou Y, Paull TT (2021) Quantifying DNA end resection in human cells. Methods Mol Biol 2153:59–69. https://doi.org/10.1007/978-1-0716-0644-5_5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya T. Paull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deshpande, R.A., Paull, T.T. (2022). Characterization of DNA-PK-Bound End Fragments Using GLASS-ChIP. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics