Skip to main content

Microfluidic Neuromuscular Co-culture System for Tracking Cell-to-Cell Transfer and Axonal Transport of Labeled Proteins

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

The molecular communication mechanisms within the Motor Neurons (MN) distant axon and its soma, as well as between MN and their neighboring cells and extracellular environment are of keen interest for our understanding of neurodevelopment and neurodegenerative diseases. One tool that has significantly improved our ability to study such processes with high spatiotemporal resolution is microfluidic devices. Here we describe a step-by-step guide to the neuromuscular co-culturing procedure and demonstrate how to track trophic factors transmission from muscle-to-neuron and their transport along the axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ibáñez CF (2007) Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol. 17:519–528

    Article  Google Scholar 

  2. Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14:177–187. https://doi.org/10.1038/nrn3253

    Article  CAS  PubMed  Google Scholar 

  3. Guedes-Dias P, Holzbaur ELF (2019) Axonal transport: driving synaptic function. Science 366(6462):eaaw9997. https://doi.org/10.1126/science.aaw9997. PMID: 31601744; PMCID: PMC6996143

  4. Surana S, Villarroel-Campos D, Lazo OM et al (2020) The evolution of the axonal transport toolkit. Traffic 21(1):13–33. https://doi.org/10.1111/tra.12710. Epub 2019 Nov 28. PMID: 31670447

  5. Brenner D, Yilmaz R, Müller K et al (2018) Hot-spot KIF5A mutations cause familial ALS. Brain 141:688–697. https://doi.org/10.1093/brain/awx370

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gunawardena S, Her L-S, Brusch RG et al (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40

    Article  CAS  Google Scholar 

  7. Bilsland LG, Sahai E, Kelly G et al (2010) Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A 107:20523–20528. https://doi.org/10.1073/pnas.1006869107

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ionescu A, Gradus T, Altman T et al (2019) Targeting the sigma-1 receptor via pridopidine ameliorates central features of ALS pathology in a SOD1 G93A model. Cell Death Dis 10. https://doi.org/10.1038/s41419-019-1451-2

  9. Perlson E, Jeong G-B, Ross JL et al (2009) A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J Neurosci 29:9903–9917. https://doi.org/10.1523/JNEUROSCI.0813-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ionescu A, Zahavi EE, Gradus T et al (2016) Compartmental microfluidic system for studying muscle-neuron communication and neuromuscular junction maintenance. Eur J Cell Biol 95:69–88. https://doi.org/10.1016/j.ejcb.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Gluska S, Chein M, Rotem N et al (2015) Tracking Quantum-Dot labeled neurotropic factors transport along primary neuronal axons in compartmental microfluidic chambers. Methods Cell Biol. https://doi.org/10.1016/bs.mcb.2015.06.016

  12. Altman T, Maimon R, Ionescu A et al (2020) Axonal transport of organelles in motor neuron cultures using microfluidic chambers system. J Vis Exp 2020:60993. https://doi.org/10.3791/60993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Perlson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ionescu, A., Perlson, E. (2022). Microfluidic Neuromuscular Co-culture System for Tracking Cell-to-Cell Transfer and Axonal Transport of Labeled Proteins. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics