Skip to main content

Studying Axonal Transport in the Brain by Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

From the earliest notions of dynamic movements within the cell by Leeuwenhoek, intracellular transport in eukaryotes has been primarily explored by optical imaging. The giant axon of the squid became a prime experimental model for imaging transport due to its size, optical transparency, and physiological robustness. Even the biochemical basis of transport was identified using optical assays based on video microscopy of fractionated squid axoplasm. Discoveries about the dynamics and molecular components of the intracellular transport system continued in many model organisms that afforded experimental systems for optical imaging. Yet whether these experimental systems reflected a valid picture of axonal transport in the opaque mammalian brain was unknown.

Magnetic resonance imaging (MRI) provides a non-destructive approach to peer into opaque tissues like the brain . The paramagnetic ion, manganese (MnII), gives a hyperintense signal in T1 weighted MRI that can serve as a marker for axonal transport. Mn(II) enters active neurons via voltage-gated calcium channels and is transported via microtubule motors down their axons by fast axonal transport. Clearance of Mn(II) is slow. Scanning live animals at successive time points reveals the dynamics of Mn(II) transport by detecting Mn(II)-induced intensity increases or accumulations along a known fiber tract, such as the optic nerve or hippocampal-forebrain projections. Mn(II)-based tract tracing also reveals projections even when not in fiber bundles, such as projections in the olfactory system or from medial prefrontal cortex into midbrain and brain stem. The rate of Mn(II) accumulation, detected as increased signal intensity by MR, serves as a proxy for transport rates. Here we describe the method for measuring transport rates and projections by mangeses-enhanced magnetic resonance imaging, MEMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lauterbur PC, Mendonca MH, Rudin AM (1978) Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. In: Frontiers of Biological Energetics, vol 1. Academic Press, pp 752–759

    Chapter  Google Scholar 

  2. Mendoca-Dias MH, Gaggelli E, Lauterbur PC (1983) Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin Nuclear Med 13(4):364–376

    Article  Google Scholar 

  3. Lin YJ (1997) An approach to direct imaging of brain activation with MRI by activity-induced manganese dependent, “AIM,” Contrast. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  4. Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38(3):378–388. https://doi.org/10.1002/mrm.1910380305

    Article  CAS  PubMed  Google Scholar 

  5. Pautler RG, Silva AC, Koretsky AP (1998) In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 40(5):740–748. https://doi.org/10.1002/mrm.1910400515

    Article  CAS  PubMed  Google Scholar 

  6. Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103(1):23–37

    Article  CAS  Google Scholar 

  7. Van Haeften T, Wouterlood FG (2000) Neuroanatomical tracing at high resolution. J Neurosci Methods 103(1):107–116

    Article  Google Scholar 

  8. Inoue T, Majid T, Pautler RG (2011) Manganese enhanced MRI (MEMRI): neurophysiological applications. Rev Neurosci 22(6):675–694. https://doi.org/10.1515/RNS.2011.048

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pautler RG, Koretsky AP (2002) Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 16(2):441–448. https://doi.org/10.1006/nimg.2002.1075

    Article  PubMed  Google Scholar 

  10. Bearer EL, Falzone TL, Zhang X, Biris O, Rasin A, Jacobs RE (2007) Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI). Neuroimage 37(Suppl 1):S37–S46. https://doi.org/10.1016/j.neuroimage.2007.04.053

    Article  PubMed  Google Scholar 

  11. Watanabe T, Michaelis T, Frahm J (2001) Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magn Reson Med 46(3):424–429. https://doi.org/10.1002/mrm.1209

    Article  CAS  PubMed  Google Scholar 

  12. Pautler RG (2004) In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 17(8):595–601. https://doi.org/10.1002/nbm.942

    Article  CAS  PubMed  Google Scholar 

  13. Pautler RG, Mongeau R, Jacobs RE (2003) In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 50(1):33–39. https://doi.org/10.1002/mrm.10498

    Article  PubMed  Google Scholar 

  14. Tindemans I, Boumans T, Verhoye M, Van der Linden A (2006) IR-SE and IR-MEMRI allow in vivo visualization of oscine neuroarchitecture including the main forebrain regions of the song control system. NMR Biomed 19(1):18–29. https://doi.org/10.1002/nbm.989

    Article  PubMed  Google Scholar 

  15. Tindemans I, Verhoye M, Balthazart J, Van Der Linden A (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Euro J Neurosci 18(12):3352–3360. https://doi.org/10.1111/j.1460-9568.2003.03056.x

    Article  CAS  Google Scholar 

  16. Van der Linden A, Van Meir V, Boumans T, Poirier C, Balthazart J (2009) MRI in small brains displaying extensive plasticity. Trends Neurosci 32(5):257–266. https://doi.org/10.1016/j.tins.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  17. Van der Linden A, Van Meir V, Tindemans I, Verhoye M, Balthazar J (2004) Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 17(8):602–612

    Article  Google Scholar 

  18. Van der Linden A, Van Meir V, Tindemans I, Verhoye M, Balthazart J (2004) Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 17(8):602–612. https://doi.org/10.1002/nbm.936

    Article  CAS  PubMed  Google Scholar 

  19. Van der Linden A, Verhoye M, Van Meir V, Tindemans I, Eens M, Absil P, Balthazart J (2002) In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system. Neuroscience 112(2):467–474. https://doi.org/10.1016/s0306-4522(02)00070-2

    Article  PubMed  Google Scholar 

  20. Van Meir V, Pavlova D, Verhoye M, Pinxten R, Balthazart J, Eens M, Van der Linden A (2006) In vivo MR imaging of the seasonal volumetric and functional plasticity of song control nuclei in relation to song output in a female songbird. Neuroimage 31(3):981–992. https://doi.org/10.1016/j.neuroimage.2006.01.005

    Article  PubMed  Google Scholar 

  21. Van Meir V, Verhoye M, Absil P, Eens M, Balthazart J, Van der Linden A (2004) Differential effects of testosterone on neuronal populations and their connections in a sensorimotor brain nucleus controlling song production in songbirds: a manganese enhanced-magnetic resonance imaging study. Neuroimage 21(3):914–923. https://doi.org/10.1016/j.neuroimage.2003.10.007

    Article  PubMed  Google Scholar 

  22. Bearer EL, Zhang X, Janvelyan D, Boulat B, Jacobs RE (2009) Reward circuitry is perturbed in the absence of the serotonin transporter. Neuroimage 46(4):1091–1104. https://doi.org/10.1016/j.neuroimage.2009.03.026

    Article  PubMed  Google Scholar 

  23. Gallagher JJ, Zhang X, Hall FS, Uhl GR, Bearer EL, Jacobs RE (2013) Altered reward circuitry in the norepinephrine transporter knockout mouse. PLoS One 8(3):e57597. https://doi.org/10.1371/journal.pone.0057597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Bearer EL, Boulat B, Hall FS, Uhl GR, Jacobs RE (2010) Altered neurocircuitry in the dopamine transporter knockout mouse brain. PLoS One 5(7):e11506. https://doi.org/10.1371/journal.pone.0011506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bearer EL, Zhang X, Jacobs RE (2007) Live imaging of neuronal connections by magnetic resonance: robust transport in the hippocampal–septal memory circuit in a mouse model of Down syndrome. Neuroimage 37(1):230–242. https://doi.org/10.1016/j.neuroimage.2007.05.010

    Article  PubMed  Google Scholar 

  26. Gallagher JJ, Zhang X, Ziomek GJ, Jacobs RE, Bearer EL (2012) Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI. Neuroimage 60(3):1856–1866. https://doi.org/10.1016/j.neuroimage.2012.01.132

    Article  PubMed  Google Scholar 

  27. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1):39–50. https://doi.org/10.1016/S0092-8674(85)80099-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88(3):1089–1118. https://doi.org/10.1152/physrev.00023.2007

    Article  CAS  PubMed  Google Scholar 

  29. Medina CS, Biris O, Falzone TL, Zhang X, Zimmerman AJ, Bearer EL (2017) Hippocampal to basal forebrain transport of Mn(2+) is impaired by deletion of KLC1, a subunit of the conventional kinesin microtubule-based motor. Neuroimage 145(Pt A):44–57. https://doi.org/10.1016/j.neuroimage.2016.09.035

    Article  CAS  PubMed  Google Scholar 

  30. Black MM (2016) Chapter 1—Axonal transport: the orderly motion of axonal structures. In: Pfister KK (ed) Methods in Cell Biology, vol 131. Academic Press, San Diego, CA, pp 1–19. https://doi.org/10.1016/bs.mcb.2015.06.001

    Chapter  Google Scholar 

  31. Grafstein B (1967) Transport of protein by goldfish optic nerve fibers. Science 157:196–199. https://doi.org/10.1126/science.157.3785.196

    Article  CAS  PubMed  Google Scholar 

  32. Lasek RJ (1980) Axonal transport: a dynamic view of neuronal structures. Trends Neurosci 3(4):87–91. https://doi.org/10.1016/0166-2236(80)90034-X

    Article  Google Scholar 

  33. Yuan A, Lumar A, Petethof C, Duff K, Nixon RA (2008) Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J Neurosci 28(7):1682–1687. https://doi.org/10.1523/JNEUROSCI.5242-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Canals S, Beyerlein M, Keller AL, Murayama Y, Logothetis NK (2008) Magnetic resonance imaging of cortical connectivity in vivo. Neuroimage 40(2):458–472. https://doi.org/10.1016/j.neuroimage.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  35. Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL (2021) Longitudinal manganese-enhanced magnetic resonance imaging of neural circuitry and activity. Neuroimage submitted

    Google Scholar 

  36. Bearer EL, Manifold-Wheeler BC, Medina CS, Gonzales AG, Chaves FL, Jacobs RE (2018) Alterations of functional circuitry in aging brain and the impact of mutated APP expression. Neurobiol Aging 70:276–290. https://doi.org/10.1016/j.neurobiolaging.2018.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Medina CS, Uselman TW, Barto DR, Chaves F, Jacobs RE, Bearer EL (2019) Decoupling the effects of the amyloid precursor protein from amyloid-beta plaques on axonal transport dynamics in the living brain. Front Cell Neurosci 13:501. https://doi.org/10.3389/fncel.2019.00501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Medina CS, Uselman TW, Jacobs RE, Bearer EL (2021) Medial prefrontal cortical projections are altered by a single acute fear experience: evidence for biological mechanisms of anxiety and substance abuse disorders. Paper presented at the Society for Neuroscience Global Connect Virtual meeting, Virtual, January 12, 2021

    Google Scholar 

  39. Ashburner J, Barnes G, Chen C-C, Daunizeau J, Flandin G, Friston K, Jafarian A, Kiebel S, Kilner J, Litvak V, Moran R, Penny W, Razi A, Stephan K, Tak S, Zeidman P, Gitelman D, Henson R, Hutton C, Glauche V, Mattout J, Phillips C (2020) SPM12 Manual. Functional Imaging Laboratory Wellcome Centre for Human Neuroimaging, London, UK

    Google Scholar 

  40. Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243

    Article  CAS  Google Scholar 

  41. Friston KJ (1996) Statistical parametric mapping and other analysis of functional imaging data. In: Toga AW, Mazziotta JC (eds) Brain Mapping: The Methods. Academic Press, San Diego, CA, p 471

    Google Scholar 

  42. Penny W, Friston K, Ashburner J, Kiebel S, Nichols T (2007) Statistical parametric mapping: the analysis of functional brain images. Academic Press, San Diego, CA. https://doi.org/10.1016/B978-0-12-372560-8.X5000-1

    Book  Google Scholar 

  43. Delcroix JD, Valletta J, Wu C, Howe CL, Lai CF, Cooper JD, Belichenko PV, Salehi A, Mobley WC (2004) Trafficking the NGF signal: implications for normal and degenerating neurons. Prog Brain Res 146:3–23

    CAS  PubMed  Google Scholar 

  44. Connor RJ (1987 Sample size for testing differences in proportions for the paired-sample design. Biometrics 43(1):207–211.

    Google Scholar 

  45. Lachin JM (1981) Introduction to sample size determination and power analysis for clinical trials. Control Clin Trials 2(2):93–113. https://doi.org/10.1016/0197-2456(81)90001-5

  46. Medina CS, Manifold-Wheeler B, Gonzales A, Bearer EL (2018) Automated computational processing of 3-D MR images of mouse brain for phenotyping of living animals. Curr Protoc Mol Biol 119(1). https://doi.org/10.1002/cpmb.40

  47. Medina CS, Uselman TW, Barto DR, Cháves F, Jacobs RE, Bearer EL (2019) Decoupling the effects of the amyloid precursor protein from amyloid-β plaques on axonal transport dynamics in the living brain. Front Cell Neurosci 13. https://doi.org/10.3389/fncel.2019.00501

  48. Delora A, Gonzales A, Medina CS, Mitchell A, Mohed AF, Jacobs RE, Bearer EL (2016) A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head. J Neurosci Methods 257:185–193. https://doi.org/10.1016/j.jneumeth.2015.09.031

    Article  PubMed  Google Scholar 

  49. Medina CS, Manifold-Wheeler B, Gonzales A, Bearer EL (2017) Automated computational processing of 3-D MR images of mouse brain for phenotyping of living animals. Curr Protoc Mol Biol 119:29A 25 21–29A 25 38. https://doi.org/10.1002/cpmb.40

    Article  Google Scholar 

  50. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97. https://doi.org/10.1109/42.668698

    Article  CAS  PubMed  Google Scholar 

  51. Larsen CT, Iglesias JE, Van Leemput K (2014) N3 bias field correction explained as a bayesian modeling method, Bayesian and grAphical models for biomedical imaging. Springer, Cham, Switzerland, pp 1–12

    Google Scholar 

  52. Tustison NJ, Avants BB, Cook PA, Yuanjie Z, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imag 29(6):1310–1320. https://doi.org/10.1109/tmi.2010.2046908

    Article  Google Scholar 

  53. Uselman TW, Barto DR, Jacobs RE, Bearer EL (2020) Evolution of brain-wide activity in the awake behaving mouse after acute fear by longitudinal manganese-enhanced MRI. Neuroimage 222(116975):1–22. https://doi.org/10.1016/j.neuroimage.2020.116975

    Article  CAS  Google Scholar 

  54. Bearer EL, Barto D, Reviere ARH, Jacobs RE (2018, 2018) Neural activation imaged by MEMRI in mouse models of PTSD: early life stress and role of the serotonergic system in prolonged response to fear. Pro Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med

    Google Scholar 

Download references

Acknowledgments

We are grateful to many people in our labs who contributed to this protocol over more than 15 years. We thank Taylor Uselman and Chris Medina for assistance with our computational image analysis pipeline, and for critical reading of this MS. We are grateful to Sharon Wu Lin for animal husbandry. Development of this protocol was supported by the Beckman Institute at Caltech (R.E.J. and X.Z.), the Moore Foundation (E.L.B.), the Harvey Family Foundation (E.L.B.), and a series of NIH grants: NIDA RO1-DA018184 (R.E.J.); NINDS RO1 NS062184 (E.L.B.); and NIMH RO1 MH096093 (E.L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine L. Bearer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bearer, E.L., Zhang, X., Jacobs, R.E. (2022). Studying Axonal Transport in the Brain by Manganese-Enhanced Magnetic Resonance Imaging (MEMRI). In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics