Skip to main content

Visualizing Vesicle-Bound Kinesins in Cultured Hippocampal Neurons

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

Eukaryotic cells use microtubule-based vesicle transport to exchange molecules between compartments. Kinesin family members mediate all microtubule plus end-directed vesicle transport. Of the 45 kinesins expressed in humans, some 20 mediate microtubule plus-end directed vesicle transport. Here we describe a technique to visualize vesicle-bound kinesins in cultured hippocampal neurons. The method involves the expression of the vesicle-binding tail domain while minimizing the cytoplasmic pool. Using this approach drastically improves vesicle labeling compared to full-length kinesins. This tool is useful for systematically comparing the localization of different kinesins in the same cell type and for identifying cargo proteins that reside in vesicles moved by a specific kinesin family member. While we describe the assay in cultured hippocampal neurons, we expect it to be easily transferable to other eukaryotic cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696. https://doi.org/10.1038/nrm2774

    Article  CAS  PubMed  Google Scholar 

  2. Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777. https://doi.org/10.1038/nrm2782

    Article  CAS  PubMed  Google Scholar 

  3. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480. https://doi.org/10.1016/S0092-8674(03)00111-9

    Article  CAS  PubMed  Google Scholar 

  4. Hancock WO (2016) The kinesin-1 chemomechanical cycle: stepping toward a consensus. Biophys J 110:1216–1225. https://doi.org/10.1016/j.bpj.2016.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gilbert SP, Guzik-Lendrum S, Rayment I (2018) Kinesin-2 motors: kinetics and biophysics. J Biol Chem 293:4510–4518. https://doi.org/10.1074/jbc.R117.001324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belyy V, Yildiz A (2014) Processive cytoskeletal motors studied with single-molecule fluorescence techniques. FEBS Lett 588:3520–3525. https://doi.org/10.1016/j.febslet.2014.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678. https://doi.org/10.1126/science.1093753

    Article  CAS  PubMed  Google Scholar 

  8. Tomishige M, Stuurman N, Vale RD (2006) Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol 13:887–894. https://doi.org/10.1038/nsmb1151

    Article  CAS  PubMed  Google Scholar 

  9. Kapitein LC, Schlager MA, Kuijpers M et al (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20:290–299. https://doi.org/10.1016/j.cub.2009.12.052

    Article  CAS  PubMed  Google Scholar 

  10. Yang R, Bentley M, Huang CF, Banker G (2016) Analyzing kinesin motor domain translocation in cultured hippocampal neurons. Methods Cell Biol 131:217–232. https://doi.org/10.1016/bs.mcb.2015.06.021

    Article  PubMed  Google Scholar 

  11. van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015) Optogenetic control of organelle transport and positioning. Nature 518(7537):111–114. https://doi.org/10.1038/nature14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang C-F, Banker G (2012) The translocation selectivity of the kinesins that mediate neuronal organelle transport. Traffic 13:549–564. https://doi.org/10.1111/j.1600-0854.2011.01325.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacobson C, Schnapp B, Banker GA (2006) A change in the selective translocation of the kinesin-1 motor domain marks the initial specification of the axon. Neuron 49:797–804. https://doi.org/10.1016/j.neuron.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  14. Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC (2016) Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 35:302–318. https://doi.org/10.15252/embj.201592929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakata T, Hirokawa N (2003) Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J Cell Biol 162:1045–1055. https://doi.org/10.1083/jcb.200302175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai D, Verhey KJ, Meyhofer E (2007) Tracking single kinesin molecules in the cytoplasm of mammalian cells. Biophys J 92:4137–4144. https://doi.org/10.1529/biophysj.106.100206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai D, McEwen DP, Martens JR et al (2009) Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol 7:e1000216. https://doi.org/10.1371/journal.pbio.1000216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karasmanis EP, Phan C-T, Angelis D et al (2018) Polarity of neuronal membrane traffic requires sorting of kinesin motor cargo during entry into dendrites by a microtubule-associated septin. Dev Cell 46:518–524. https://doi.org/10.1016/J.DEVCEL.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  19. Schimert KI, Budaitis BG, Reinemann DN et al (2019) Intracellular cargo transport by single-headed kinesin motors. Proc Natl Acad Sci U S A 116:6152–6161. https://doi.org/10.1073/pnas.1817924116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nabb AT, Frank M, Bentley M (2020) Smart motors and cargo steering drive kinesin-mediated selective transport. Mol Cell Neurosci 103:103464. https://doi.org/10.1016/j.mcn.2019.103464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keren-Kaplan T, Bonifacino JS (2021) ARL8 relieves SKIP autoinhibition to enable coupling of lysosomes to kinesin-1. Curr Biol 31(3):540–554.e5. https://doi.org/10.1016/j.cub.2020.10.071

    Article  CAS  PubMed  Google Scholar 

  22. Fu MM, Holzbaur ELF (2013) JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol 202:495–508. https://doi.org/10.1083/jcb.201302078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Schwarz TL (2009) The mechanism of Ca2+ −dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174. https://doi.org/10.1016/j.cell.2008.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu W, Gelfand VI (2017) Moonlighting motors: kinesin, dynein, and cell polarity. Trends Cell Biol 27(7):505–514. https://doi.org/10.1016/j.tcb.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siddiqui N, Straube A (2017) Intracellular cargo transport by kinesin-3 motors. Biochemist 82:803–815. https://doi.org/10.1134/S0006297917070057

    Article  CAS  Google Scholar 

  26. Yang R, Bostick Z, Garbouchian A et al (2019) A novel strategy to visualize vesicle-bound kinesins reveals the diversity of kinesin-mediated transport. Traffic 20(11):851–866. https://doi.org/10.1111/tra.12692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Verhey KJ, Kaul N, Soppina V (2011) Kinesin assembly and movement in cells. Annu Rev Biophys 40:267–288. https://doi.org/10.1146/annurev-biophys-042910-155310

    Article  CAS  PubMed  Google Scholar 

  28. Lorenzo DN, Badea A, Zhou R et al (2019) βII-spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport. Proc Natl Acad Sci 116(31):15686–15695. https://doi.org/10.1073/pnas.1820649116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang R, Brattain MG (2007) The maximal size of protein to diffuse through the nuclear pore is larger than 60 kDa. FEBS Lett 581:3164–3170. https://doi.org/10.1016/j.febslet.2007.05.082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gross GG, Junge JA, Mora RJ et al (2013) Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78:971–985. https://doi.org/10.1016/j.neuron.2013.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentley M, Banker G (2016) The cellular mechanisms that maintain neuronal polarity. Nat Rev Neurosci 17:611–622. https://doi.org/10.1038/nrn.2016.100

    Article  CAS  PubMed  Google Scholar 

  32. Silverman MA, Kaech S, Ramser EM et al (2010) Expression of kinesin superfamily genes in cultured hippocampal neurons. Cytoskeleton 67:784–795. https://doi.org/10.1002/cm.20487

    Article  CAS  PubMed  Google Scholar 

  33. Frank M, Citarella CG, Quinones GB, Bentley M (2020) A novel labeling strategy reveals that myosin Va and myosin Vb bind the same dendritically polarized vesicle population. Traffic 21:689–701. https://doi.org/10.1111/tra.12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415. https://doi.org/10.1038/nprot.2006.356

    Article  CAS  PubMed  Google Scholar 

  35. Grimm JB, English BP, Chen J et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250. https://doi.org/10.1038/nmeth.3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Magidson V, Khodjakov A (2013) Circumventing photodamage in live-cell microscopy, 4th edn. Elsevier Inc.

    Google Scholar 

  37. Kiepas A, Voorand E, Mubaid F et al (2020) Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J Cell Sci 133:jcs.242834. https://doi.org/10.1242/jcs.242834

    Article  CAS  Google Scholar 

  38. Icha J, Weber M, Waters JC, Norden C (2017) Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39:1–15. https://doi.org/10.1002/bies.201700003

    Article  Google Scholar 

  39. Jenkins B, Decker H, Bentley M et al (2012) A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations. J Cell Biol 198:749–761. https://doi.org/10.1083/jcb.201205070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bentley M, Banker G (2015) A novel assay to identify the trafficking proteins that bind to specific vesicle populations. Curr Protoc Cell Biol 69:13.8.1–13.8.12. https://doi.org/10.1002/0471143030.cb1308s69

    Article  Google Scholar 

  41. Bentley M, Decker H, Luisi J, Banker G (2015) A novel assay reveals preferential binding between Rabs, kinesins, and specific endosomal subpopulations. J Cell Biol 93:4604. https://doi.org/10.1083/jcb.201408056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Bentley lab for their feedback on the manuscript. This work was supported by NIH grant R01MH066179 and an NIH-funded predoctoral fellowship to A.G. (T32GM067545).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Bentley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Montgomery, A., Garbouchian, A., Bentley, M. (2022). Visualizing Vesicle-Bound Kinesins in Cultured Hippocampal Neurons. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics