Skip to main content

Molecular Analysis of Axonal Transport Dynamics upon Modulation of Microtubule Acetylation

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

Axonal transport is used by neurons to distribute mRNAs, proteins, and organelles to their peripheral compartments in order to sustain their structural and functional integrity. Cargoes are transported along the microtubule (MT) network whose post-translational modifications influence transport dynamics. Here, we describe methods to modulate MT acetylation and record its impact on axonal transport in cultured mouse cortical projection neurons as well as in motoneurons of Drosophila melanogaster third-instar larvae. Specifically, we provide a step-by step procedure to reduce the level of MT acetylation and to record and analyze the transport of dye-labeled organelles in projection neuron axons cultured in microfluidic chambers. In addition, we describe the method to record and analyze GFP-tagged mitochondria transport along the motoneuron axons of transgenic Drosophila melanogaster third-instar larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21(6):307–326. https://doi.org/10.1038/s41580-020-0214-3

    Article  CAS  PubMed  Google Scholar 

  2. Hubbert C, Guardiola A, Shao R et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458. https://doi.org/10.1038/417455a

    Article  CAS  PubMed  Google Scholar 

  3. Portran D, Schaedel L, Xu Z et al (2017) Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol 19:391–398. https://doi.org/10.1038/ncb3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dompierre JP, Godin JD, Charrin BC et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583. https://doi.org/10.1523/JNEUROSCI.0037-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reed NA, Cai D, Blasius TL et al (2006) Microtubule acetylation promotes Kinesin-1 binding and transport. Curr Biol 16:2166–2172. https://doi.org/10.1016/j.cub.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  6. Godena VK, Brookes-Hocking N, Moller A et al (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5:5245. https://doi.org/10.1038/ncomms6245

    Article  CAS  PubMed  Google Scholar 

  7. D’Ydewalle C, Krishnan J, Chiheb DM et al (2011) HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-tooth disease. Nat Med 17:968–974. https://doi.org/10.1038/nm.2396

    Article  CAS  PubMed  Google Scholar 

  8. Kim GW, Li L, Gorbani M et al (2013) Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 288:20334–20350. https://doi.org/10.1074/jbc.M113.464792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li L, Jayabal S, Ghorbani M et al (2019) ATAT1 regulates forebrain development and stress-induced tubulin hyperacetylation. Cell Mol Life Sci 76:3621–3640. https://doi.org/10.1007/s00018-019-03088-3

    Article  CAS  PubMed  Google Scholar 

  10. Wei D, Gao N, Li L et al (2018) α-Tubulin acetylation restricts axon overbranching by dampening microtubule plus-end dynamics in neurons. Cereb Cortex 28:3332–3346. https://doi.org/10.1093/cercor/bhx225

    Article  Google Scholar 

  11. Even A, Morelli G, Broix L et al (2019) ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv 5:eaax2705. https://doi.org/10.1126/sciadv.aax2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L, Wei D, Wang Q et al (2012) MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons. J Neurosci 32:12673–12683. https://doi.org/10.1523/JNEUROSCI.0016-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Bail R, Morelli G, Gladwyn-ng I (2017) Dacapo regulates axonal transport through the modulation of microtubule acetylation. Master’s Thesis, University of Liege, Belgium. https://orbi.uliege.be/handle/2268/235914

  14. Zala D, Hinckelmann M-V, Yu H et al (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491. https://doi.org/10.1016/j.cell.2012.12.029

    Article  CAS  PubMed  Google Scholar 

  15. Turchetto S, Broix L, Nguyen L (2020) Ex vivo recording of axonal transport dynamics on postnatal organotypic cortical slices. STAR Protoc 1:100131. https://doi.org/10.1016/j.xpro.2020.100131

    Article  PubMed  PubMed Central  Google Scholar 

  16. Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP (2005) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. Bone 23:1–7. https://doi.org/10.1021/ja102758v.Rational

    Article  Google Scholar 

  17. Kalebic N, Sorrentino S, Perlas E et al (2013) αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun 4:1962. https://doi.org/10.1038/ncomms2962

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.T. and R.L.B are PhD students from F.R.S-F.N.R.S.; L.B. and L.N. are respectively Postdoctoral Researcher and Director from F.R.S-F.N.R.S. The work in the Nguyen laboratory is supported by the F.R.S.-F.N.R.S. (Synet; EOS 0019118F-RG36), the Fonds Leon Fredericq, the Fondation Médicale Reine Elisabeth, the Fondation Simone et Pierre Clerdent, the Belgian Science Policy (IAP-VII network P7/20), and the ERANET Neuron STEM-MCD and NeuroTalk. The figures were made with Biorender (https://biorender.com/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Turchetto, S., Le Bail, R., Broix, L., Nguyen, L. (2022). Molecular Analysis of Axonal Transport Dynamics upon Modulation of Microtubule Acetylation. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics