Skip to main content

Survey of Approaches for Investigation of Atherosclerosis In Vivo

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Although in vitro model systems are useful for investigation of atherosclerosis-associated processes, they represent simplification of complex events that occur in vivo, which involve interactions between many different cell types together with their environment. The use of animal model systems is important for more in-depth insights of the molecular mechanisms underlying atherosclerosis and for identifying potential targets for agents that can prevent plaque formation and even reverse existing disease. This chapter will provide a survey of such animal models and associated techniques that are routinely used for research of atherosclerosis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan YH, Ramji DP (2020) A perspective on targeting inflammation and cytokine actions in atherosclerosis. Future Med Chem 12(7):613–626. https://doi.org/10.4155/fmc-2019-0301

    Article  CAS  PubMed  Google Scholar 

  2. Moss JWE, Ramji DP (2016) Nutraceutical therapies for atherosclerosis. Nat Rev Cardiol 13(9):513–532. https://doi.org/10.1038/nrcardio.2016.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moss JWE, Williams JO, Ramji DP (2018) Nutraceuticals as therapeutic agents for atherosclerosis. Biochim Biophys Acta 1864(5 Pt A):1562–1572. https://doi.org/10.1016/j.bbadis.2018.02.006

    Article  CAS  PubMed Central  Google Scholar 

  4. Buckley ML, Ramji DP (2015) The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta 1852(7):1498–1510. https://doi.org/10.1016/j.bbadis.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  5. McLaren JE, Michael DR, Ashlin TG, Ramji DP (2011) Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 50(4):331–347. https://doi.org/10.1016/j.plipres.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  6. Fearon IM, Gaça MD, Nordskog BK (2013) In vitro models for assessing the potential cardiovascular disease risk associated with cigarette smoking. Toxicol in Vitro 27(1):513–522. https://doi.org/10.1016/j.tiv.2012.08.018

    Article  CAS  PubMed  Google Scholar 

  7. McLaren JE, Michael DR, Salter RC, Ashlin TG, Calder CJ, Miller AM, Liew FY, Ramji DP (2010) IL-33 reduces macrophage foam cell formation. J Immunol 185(2):1222–1229. https://doi.org/10.4049/jimmunol.1000520

    Article  CAS  PubMed  Google Scholar 

  8. Gallagher H, Williams JO, Ferekidis N, Ismail A, Chan YH, Michael DR, Guschina IA, Tyrrell VJ, O’Donnell VB, Harwood JL, Khozin-Goldberg I, Boussiba S, Ramji DP (2019) Dihomo-γ-linolenic acid inhibits several key cellular processes associated with atherosclerosis. Biochim Biophys Acta 1865(9):2538–2550. https://doi.org/10.1016/j.bbadis.2019.06.011

    Article  CAS  Google Scholar 

  9. Gao S, Zhou J, Liu N, Wang L, Gao Q, Wu Y, Zhao Q, Liu P, Wang S, Liu Y, Guo N, Shen Y, Yuan Z (2015) Curcumin induces M2 macrophage polarization by secretion of IL-4 and/or IL-13. J Mol Cell Cardiol 85:131–139. https://doi.org/10.1016/j.yjmcc.2015.04.025

    Article  CAS  PubMed  Google Scholar 

  10. Zhao D, Li J, Xue C, Feng K, Liu L, Zeng P, Wang X, Chen Y, Li L, Zhang Z, Duan Y, Han J, Yang X (2020) TL1A inhibits atherosclerosis in apoE-deficient mice by regulating the phenotype of vascular smooth muscle cells. J Biol Chem 295(48):16314–16327. https://doi.org/10.1074/jbc.RA120.015486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32(5):1104–1115. https://doi.org/10.1161/ATVBAHA.111.237693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donckt C, Martinet W, De Meyer GRY (2017) Animal models of atherosclerosis. Eur J Pharmacol 816:3–13. https://doi.org/10.1016/j.ejphar.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  13. Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald-Smith S, To TLO, Yan BP, Liu T, Tse G (2017) Animal models of atherosclerosis. Biomed Rep 6(3):259–266. https://doi.org/10.3892/br.2017.843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D (2020) Small rodent models of atherosclerosis. Biomed Pharmacother 129:110426. https://doi.org/10.1016/j.biopha.2020.110426

    Article  CAS  PubMed  Google Scholar 

  15. von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ (2017) Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab 25(2):248–261. https://doi.org/10.1016/j.cmet.2016.11.001

    Article  CAS  Google Scholar 

  16. Oppi S, Lüscher TF, Stein S (2019) Mouse models for atherosclerosis research-which is my line? Front Cardiovasc Med 6:46. https://doi.org/10.3389/fcvm.2019.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R, American Heart Association Council on Arteriosclerosis TraVB, Sciences aCoBC (2017) Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol 37(9):e131–e157. https://doi.org/10.1161/ATV.0000000000000062

    Article  CAS  PubMed  Google Scholar 

  18. Greenow K, Pearce NJ, Ramji DP (2005) The key role of apolipoprotein E in atherosclerosis. J Mol Med 83(5):329–342. https://doi.org/10.1007/s00109-004-0631-3

    Article  CAS  PubMed  Google Scholar 

  19. LeBlond ND, Ghorbani P, O’Dwyer C, Ambursley N, Nunes JRC, Smith TKT, Trzaskalski NA, Mulvihill EE, Viollet B, Foretz M, Fullerton MD (2020) Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. J Lipid Res 61(12):1697–1706. https://doi.org/10.1194/jlr.RA120001040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goettsch C, Hutcheson JD, Hagita S, Rogers MA, Creager MD, Pham T, Choi J, Mlynarchik AK, Pieper B, Kjolby M, Aikawa M, Aikawa E (2016) A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis 251:109–118. https://doi.org/10.1016/j.atherosclerosis.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Preiss D, Mafham M (2017) PCSK9 inhibition: the dawn of a new age in cholesterol lowering? Diabetologia 60(3):381–389. https://doi.org/10.1007/s00125-016-4178-y

    Article  CAS  PubMed  Google Scholar 

  22. Wu C, Daugherty A, Lu HS (2019) Updates on approaches for studying atherosclerosis. Arterioscler Thromb Vasc Biol 39(4):e108–e117. https://doi.org/10.1161/ATVBAHA.119.312001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lutgens E, Daemen M, Kockx M, Doevendans P, Hofker M, Havekes L, Wellens H, de Muinck ED (1999) Atherosclerosis in APOE*3-Leiden transgenic mice: from proliferative to atheromatous stage. Circulation 99(2):276–283. https://doi.org/10.1161/01.cir.99.2.276

    Article  CAS  PubMed  Google Scholar 

  24. Gijbels MJ, van der Cammen M, van der Laan LJ, Emeis JJ, Havekes LM, Hofker MH, Kraal G (1999) Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice: an immunohistochemical study. Atherosclerosis 143(1):15–25. https://doi.org/10.1016/s0021-9150(98)00263-9

    Article  CAS  PubMed  Google Scholar 

  25. De Wilde D, Trachet B, Van der Donckt C, Vandeghinste B, Descamps B, Vanhove C, De Meyer GR, Segers P (2015) Vulnerable plaque detection and quantification with gold particle-enhanced computed tomography in atherosclerotic mouse models. Mol Imaging 14:9. https://doi.org/10.2310/7290.2015.00009

    Article  CAS  Google Scholar 

  26. Kurdi A, Roth L, Van der Veken B, Van Dam D, De Deyn PP, De Doncker M, Neels H, De Meyer GRY, Martinet W (2019) Everolimus depletes plaque macrophages, abolishes intraplaque neovascularization and improves survival in mice with advanced atherosclerosis. Vasc Pharmacol 113:70–76. https://doi.org/10.1016/j.vph.2018.12.004

    Article  CAS  Google Scholar 

  27. Roth L, Schrijvers DM, Martinet W, De Meyer GR (2016) Angiotensin II increases coronary fibrosis, cardiac hypertrophy and the incidence of myocardial infarctions in ApoE-/- Fbn1C1039G+/- mice. Acta Cardiol 71(4):483–488. https://doi.org/10.2143/AC.71.4.3159703

    Article  CAS  PubMed  Google Scholar 

  28. Aparicio-Vergara M, Shiri-Sverdlov R, de Haan G, Hofker MH (2010) Bone marrow transplantation in mice as a tool for studying the role of hematopoietic cells in metabolic and cardiovascular diseases. Atherosclerosis 213(2):335–344. https://doi.org/10.1016/j.atherosclerosis.2010.05.030

    Article  CAS  PubMed  Google Scholar 

  29. Sreeramkumar V, Hidalgo A (2015) Bone marrow transplantation in mice to study the role of hematopoietic cells in atherosclerosis. Methods Mol Biol 1339:323–332. https://doi.org/10.1007/978-1-4939-2929-0_22

    Article  CAS  PubMed  Google Scholar 

  30. Schiller NK, Kubo N, Boisvert WA, Curtiss LK (2001) Effect of gamma-irradiation and bone marrow transplantation on atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 21(10):1674–1680. https://doi.org/10.1161/hq1001.096724

    Article  CAS  PubMed  Google Scholar 

  31. Patel J, Douglas G, Kerr AG, Hale AB, Channon KM (2018) Effect of irradiation and bone marrow transplantation on angiotensin II-induced aortic inflammation in ApoE knockout mice. Atherosclerosis 276:74–82. https://doi.org/10.1016/j.atherosclerosis.2018.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ikeda J, Scipione CA, Hyduk S, Althagafi MG, Atif J, Dick SA, Rajora MA, Jang E, Emoto T, Murakami J, Ikeda N, Ibrahim HM, Polenz CK, Gao X, Tai K, Jongstra-Bilen J, Nakashima R, Epelman S, Robbins C, Zheng G, Lee WL, MacParland SA, Cybulsky MI (2021) Radiation impacts early atherosclerosis by suppressing intimal LDL accumulation. Circ Res 128:530. https://doi.org/10.1161/CIRCRESAHA.119.316539

    Article  CAS  PubMed  Google Scholar 

  33. Feig JE (2014) Regression of atherosclerosis: insights from animal and clinical studies. Ann Glob Health 80(1):13–23. https://doi.org/10.1016/j.aogh.2013.12.001

    Article  PubMed  Google Scholar 

  34. Rahman K, Fisher EA (2018) Insights from pre-clinical and clinical studies on the role of innate inflammation in atherosclerosis regression. Front Cardiovasc Med 5:32. https://doi.org/10.3389/fcvm.2018.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burke AC, Huff MW (2018) Regression of atherosclerosis: lessons learned from genetically modified mouse models. Curr Opin Lipidol 29(2):87–94. https://doi.org/10.1097/MOL.0000000000000493

    Article  CAS  PubMed  Google Scholar 

  36. Williams KJ, Feig JE, Fisher EA (2008) Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat Clin Pract Cardiovasc Med 5(2):91–102. https://doi.org/10.1038/ncpcardio1086

    Article  CAS  PubMed  Google Scholar 

  37. Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV (2017) The phenomenon of atherosclerosis reversal and regression: lessons from animal models. Exp Mol Pathol 102(1):138–145. https://doi.org/10.1016/j.yexmp.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  38. Véniant MM, Withycombe S, Young SG (2001) Lipoprotein size and atherosclerosis susceptibility in Apoe(-/-) and Ldlr(-/-) mice. Arterioscler Thromb Vasc Biol 21(10):1567–1570. https://doi.org/10.1161/hq1001.097780

    Article  PubMed  Google Scholar 

  39. Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, Baker AH, McInnes IB, Liew FY (2008) IL-33 reduces the development of atherosclerosis. J Exp Med 205(2):339–346. https://doi.org/10.1084/jem.20071868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cardilo-Reis L, Gruber S, Schreier SM, Drechsler M, Papac-Milicevic N, Weber C, Wagner O, Stangl H, Soehnlein O, Binder CJ (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4(10):1072–1086. https://doi.org/10.1002/emmm.201201374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lindskog Jonsson A, Caesar R, Akrami R, Reinhardt C, Fåk Hållenius F, Borén J, Bäckhed F (2018) Impact of gut microbiota and diet on the development of atherosclerosis in Apoe-/- mice. Arterioscler Thromb Vasc Biol 38(10):2318–2326. https://doi.org/10.1161/ATVBAHA.118.311233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bijnen M, van de Gaar J, Vroomen M, Gijbels MJ, de Winther M, Schalkwijk CG, Wouters K (2019) Adipose tissue macrophages do not affect atherosclerosis development in mice. Atherosclerosis 281:31–37. https://doi.org/10.1016/j.atherosclerosis.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  43. Andrés-Manzano MJ, Andrés V, Dorado B (2015) Oil red O and hematoxylin and eosin staining for quantification of atherosclerosis burden in mouse aorta and aortic root. Methods Mol Biol 1339:85–99. https://doi.org/10.1007/978-1-4939-2929-0_5

    Article  CAS  PubMed  Google Scholar 

  44. Lloyd DJ, Helmering J, Kaufman SA, Turk J, Silva M, Vasquez S, Weinstein D, Johnston B, Hale C, Véniant MM (2011) A volumetric method for quantifying atherosclerosis in mice by using microCT: comparison to en face. PLoS One 6(4):e18800. https://doi.org/10.1371/journal.pone.0018800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tangirala RK, Rubin EM, Palinski W (1995) Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 36(11):2320–2328

    Article  CAS  PubMed  Google Scholar 

  46. Lhoták Š, Gyulay G, Cutz JC, Al-Hashimi A, Trigatti BL, Richards CD, Igdoura SA, Steinberg GR, Bramson J, Ask K, Austin RC (2016) Characterization of proliferating lesion-resident cells during all stages of atherosclerotic growth. J Am Heart Assoc 5(8):e003945. https://doi.org/10.1161/JAHA.116.003945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M, Bennett M (2007) Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res 100(6):884–893. https://doi.org/10.1161/01.RES.0000260802.75766.00

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson JL, George SJ, Newby AC, Jackson CL (2005) Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci U S A 102(43):15575–15580. https://doi.org/10.1073/pnas.0506201102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson JL, Fritsche-Danielson R, Behrendt M, Westin-Eriksson A, Wennbo H, Herslof M, Elebring M, George SJ, McPheat WL, Jackson CL (2006) Effect of broad-spectrum matrix metalloproteinase inhibition on atherosclerotic plaque stability. Cardiovasc Res 71(3):586–595. https://doi.org/10.1016/j.cardiores.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  50. Johnson JL, Baker AH, Oka K, Chan L, Newby AC, Jackson CL, George SJ (2006) Suppression of atherosclerotic plaque progression and instability by tissue inhibitor of metalloproteinase-2: involvement of macrophage migration and apoptosis. Circulation 113(20):2435–2444. https://doi.org/10.1161/CIRCULATIONAHA.106.613281

    Article  CAS  PubMed  Google Scholar 

  51. Johnson JL, Devel L, Czarny B, George SJ, Jackson CL, Rogakos V, Beau F, Yiotakis A, Newby AC, Dive V (2011) A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 31(3):528–535. https://doi.org/10.1161/ATVBAHA.110.219147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, Weber C, Schober A (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 122(11):4190–4202. https://doi.org/10.1172/JCI61716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hung J, Scanlon JP, Mahmoud AD, Rodor J, Ballantyne M, Fontaine MAC, Temmerman L, Kaczynski J, Connor KL, Bhushan R, Biessen EAL, Newby DE, Sluimer JC, Baker AH (2020) Novel plaque enriched long noncoding RNA in atherosclerotic macrophage regulation (PELATON). Arterioscler Thromb Vasc Biol 40(3):697–713. https://doi.org/10.1161/ATVBAHA.119.313430

    Article  CAS  PubMed  Google Scholar 

  54. O’Rourke C, Shelton G, Hutcheson JD, Burke MF, Martyn T, Thayer TE, Shakartzi HR, Buswell MD, Tainsh RE, Yu B, Bagchi A, Rhee DK, Wu C, Derwall M, Buys ES, Yu PB, Bloch KD, Aikawa E, Bloch DB, Malhotra R (2016) Calcification of vascular smooth muscle cells and imaging of aortic calcification and inflammation. J Vis Exp (111). https://doi.org/10.3791/54017

  55. Li P, Wang Y, Liu X, Liu B, Wang ZY, Xie F, Qiao W, Liang ES, Lu QH, Zhang MX (2020) Loss of PARP-1 attenuates diabetic arteriosclerotic calcification via Stat1/Runx2 axis. Cell Death Dis 11(1):22. https://doi.org/10.1038/s41419-019-2215-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ceneri N, Zhao L, Young BD, Healy A, Coskun S, Vasavada H, Yarovinsky TO, Ike K, Pardi R, Qin L, Tellides G, Hirschi K, Meadows J, Soufer R, Chun HJ, Sadeghi MM, Bender JR, Morrison AR (2017) Rac2 modulates atherosclerotic calcification by regulating macrophage interleukin-1β production. Arterioscler Thromb Vasc Biol 37(2):328–340. https://doi.org/10.1161/ATVBAHA.116.308507

    Article  CAS  PubMed  Google Scholar 

  57. Joshi FR, Lindsay AC, Obaid DR, Falk E, Rudd JH (2012) Non-invasive imaging of atherosclerosis. Eur Heart J Cardiovasc Imaging 13(3):205–218. https://doi.org/10.1093/ehjci/jer319

    Article  PubMed  Google Scholar 

  58. Gan LM, Grönros J, Hägg U, Wikström J, Theodoropoulos C, Friberg P, Fritsche-Danielson R (2007) Non-invasive real-time imaging of atherosclerosis in mice using ultrasound biomicroscopy. Atherosclerosis 190(2):313–320. https://doi.org/10.1016/j.atherosclerosis.2006.03.035

    Article  CAS  PubMed  Google Scholar 

  59. Tavakoli S, Downs K, Short JD, Nguyen HN, Lai Y, Jerabek PA, Goins B, Toczek J, Sadeghi MM, Asmis R (2017) Characterization of macrophage polarization states using combined measurement of 2-deoxyglucose and glutamine accumulation: implications for imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 37(10):1840–1848. https://doi.org/10.1161/ATVBAHA.117.308848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glinzer A, Ma X, Prakash J, Kimm MA, Lohöfer F, Kosanke K, Pelisek J, Thon MP, Vorlova S, Heinze KG, Eckstein HH, Gee MW, Ntziachristos V, Zernecke A, Wildgruber M (2017) Targeting elastase for molecular imaging of early atherosclerotic lesions. Arterioscler Thromb Vasc Biol 37(3):525–533. https://doi.org/10.1161/ATVBAHA.116.308726

    Article  CAS  PubMed  Google Scholar 

  61. Escolà-Gil JC, Lee-Rueckert M, Santos D, Cedó L, Blanco-Vaca F, Julve J (2015) Quantification of in vitro macrophage cholesterol efflux and in vivo macrophage-specific reverse cholesterol transport. Methods Mol Biol 1339:211–233. https://doi.org/10.1007/978-1-4939-2929-0_15

    Article  CAS  PubMed  Google Scholar 

  62. Huang L, Fan B, Ma A, Shaul PW, Zhu H (2015) Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice. J Lipid Res 56(5):986–997. https://doi.org/10.1194/jlr.M054742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Srivastava N, Cefalu AB, Averna M, Srivastava RAK (2018) Lack of correlation of plasma HDL with fecal cholesterol and plasma cholesterol efflux capacity suggests importance of HDL functionality in attenuation of atherosclerosis. Front Physiol 9:1222. https://doi.org/10.3389/fphys.2018.01222

    Article  PubMed  PubMed Central  Google Scholar 

  64. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 203(5):1273–1282. https://doi.org/10.1084/jem.20052205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Galkina E, Harry BL, Ludwig A, Liehn EA, Sanders JM, Bruce A, Weber C, Ley K (2007) CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall. Circulation 116(16):1801–1811. https://doi.org/10.1161/CIRCULATIONAHA.106.678474

    Article  CAS  PubMed  Google Scholar 

  66. Gjurich BN, Taghavie-Moghadam PL, Galkina EV (2015) Flow cytometric analysis of immune cells within murine aorta. Methods Mol Biol 1339:161–175. https://doi.org/10.1007/978-1-4939-2929-0_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trogan E, Feig JE, Dogan S, Rothblat GH, Angeli V, Tacke F, Randolph GJ, Fisher EA (2006) Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci U S A 103(10):3781–3786. https://doi.org/10.1073/pnas.0511043103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feig JE, Fisher EA (2013) Laser capture microdissection for analysis of macrophage gene expression from atherosclerotic lesions. Methods Mol Biol 1027:123–135. https://doi.org/10.1007/978-1-60327-369-5_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trogan E, Choudhury RP, Dansky HM, Rong JX, Breslow JL, Fisher EA (2002) Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 99(4):2234–2239. https://doi.org/10.1073/pnas.042683999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Megens RT, Soehnlein O (2015) Intravital microscopy for atherosclerosis research. Methods Mol Biol 1339:41–60. https://doi.org/10.1007/978-1-4939-2929-0_3

    Article  CAS  PubMed  Google Scholar 

  71. Eriksson EE (2011) Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation 124(19):2129–2138. https://doi.org/10.1161/CIRCULATIONAHA.111.030627

    Article  CAS  PubMed  Google Scholar 

  72. Döring Y, Noels H, Mandl M, Kramp B, Neideck C, Lievens D, Drechsler M, Megens RT, Tilstam PV, Langer M, Hartwig H, Theelen W, Marth JD, Sperandio M, Soehnlein O, Weber C (2014) Deficiency of the sialyltransferase St3Gal4 reduces Ccl5-mediated myeloid cell recruitment and arrest: short communication. Circ Res 114(6):976–981. https://doi.org/10.1161/CIRCRESAHA.114.302426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li W, Luehmann HP, Hsiao HM, Tanaka S, Higashikubo R, Gauthier JM, Sultan D, Lavine KJ, Brody SL, Gelman AE, Gropler RJ, Liu Y, Kreisel D (2018) Visualization of monocytic cells in regressing atherosclerotic plaques by intravital 2-photon and positron emission tomography-based imaging-Brief Report. Arterioscler Thromb Vasc Biol 38(5):1030–1036. https://doi.org/10.1161/ATVBAHA.117.310517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Williams JW, Martel C, Potteaux S, Esaulova E, Ingersoll MA, Elvington A, Saunders BT, Huang LH, Habenicht AJ, Zinselmeyer BH, Randolph GJ (2018) Limited macrophage positional dynamics in progressing or regressing murine atherosclerotic plaques-Brief Report. Arterioscler Thromb Vasc Biol 38(8):1702–1710. https://doi.org/10.1161/ATVBAHA.118.311319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D (2018) Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 122(12):1675–1688. https://doi.org/10.1161/CIRCRESAHA.117.312513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Winkels H, Wolf D (2020) Heterogeneity of T cells in atherosclerosis defined by single-cell RNA-sequencing and cytometry by time of flight. Arterioscler Thromb Vasc Biol 41:549. https://doi.org/10.1161/ATVBAHA.120.312137

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, Green P, Maffia P, Monaco C (2018) Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 114(10):1360–1371. https://doi.org/10.1093/cvr/cvy109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Iqbal F, Lupieri A, Aikawa M, Aikawa E (2021) Harnessing single-cell RNA sequencing to better understand how diseased cells behave the way they do in cardiovascular disease. Arterioscler Thromb Vasc Biol 41:585. https://doi.org/10.1161/ATVBAHA.120.314776

    Article  CAS  PubMed  Google Scholar 

  79. Depuydt MAC, Prange KHM, Slenders L, Örd T, Elbersen D, Boltjes A, de Jager SCA, Asselbergs FW, de Borst GJ, Aavik E, Lönnberg T, Lutgens E, Glass CK, den Ruijter HM, Kaikkonen MU, Bot I, Slütter B, van der Laan SW, Yla-Herttuala S, Mokry M, Kuiper J, de Winther MPJ, Pasterkamp G (2020) Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res 127(11):1437–1455. https://doi.org/10.1161/CIRCRESAHA.120.316770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Willemsen L, de Winther MP (2020) Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol 250(5):705–714. https://doi.org/10.1002/path.5392

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hajkarim MC, Won KJ (2019) Single cell RNA-sequencing for the study of atherosclerosis. J Lipid Atheroscler 8(2):152–161. https://doi.org/10.12997/jla.2019.8.2.152

    Article  PubMed  PubMed Central  Google Scholar 

  82. Williams JW, Winkels H, Durant CP, Zaitsev K, Ghosheh Y, Ley K (2020) Single cell RNA sequencing in atherosclerosis research. Circ Res 126(9):1112–1126. https://doi.org/10.1161/CIRCRESAHA.119.315940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA, Wang Z, Remark R, Li JR, Pina C, Faries C, Awad AJ, Moss N, Bjorkegren JLM, Kim-Schulze S, Gnjatic S, Ma’ayan A, Mocco J, Faries P, Merad M, Giannarelli C (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25(10):1576–1588. https://doi.org/10.1038/s41591-019-0590-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gu W, Ni Z, Tan YQ, Deng J, Zhang SJ, Lv ZC, Wang XJ, Chen T, Zhang Z, Hu Y, Jing ZC, Xu Q (2019) Adventitial cell atlas of wt (wild type) and ApoE (apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler Thromb Vasc Biol 39(6):1055–1071. https://doi.org/10.1161/ATVBAHA.119.312399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin JD, Nishi H, Poles J, Niu X, Mccauley C, Rahman K, Brown EJ, Yeung ST, Vozhilla N, Weinstock A, Ramsey SA, Fisher EA, Loke P (2019) Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4(4):e124574. https://doi.org/10.1172/jci.insight.124574

    Article  PubMed Central  Google Scholar 

  86. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba AE, Zernecke A (2018) Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 122(12):1661–1674. https://doi.org/10.1161/CIRCRESAHA.117.312509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DPR and Y-HC thank the British Heart Foundation for financial support (grants PG/16/25/32097 and FS/17/75/33257). AA, RA, and NA received PhD studentships from Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak P. Ramji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramji, D.P., Chan, YH., Alahmadi, A., Alotibi, R., Alshehri, N. (2022). Survey of Approaches for Investigation of Atherosclerosis In Vivo. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics