Skip to main content

Fluorescence Lifetime and Cross-correlation Spectroscopy for Observing Membrane Fusion of Liposome Models Containing Synaptic Proteins

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

  • 923 Accesses

Abstract

Watching events of membrane fusion in real time and distinguishing between intermediate steps of these events is useful for mechanistic insights but at the same time a challenging task. In this chapter, we describe how to use fluorescence cross-correlation spectroscopy and Förster-resonance energy transfer to resolve the tethering and fusion of membranes by SNARE proteins (syntaxin-1, SNAP-25, and synaptobrevin-2) as an example. The given protocols can easily be adapted to other membrane proteins to investigate their ability to tether or even fuse vesicular membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kloepper TH, Kienle CN, Fasshauer D (2007) An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 18(9):3463–3471. https://doi.org/10.1091/mbc.e07-03-0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643. https://doi.org/10.1038/nrm2002

    Article  CAS  PubMed  Google Scholar 

  3. Brunger AT, Weninger K, Bowen M et al (2009) Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 78:903–928. https://doi.org/10.1146/annurev.biochem.77.070306.103621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weber T, Zemelman BV, McNew JA et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6):759–772. https://doi.org/10.1016/s0092-8674(00)81404-x

    Article  CAS  PubMed  Google Scholar 

  5. Vites O, Florin EL, Jahn R (2008) Docking of liposomes to planar surfaces mediated by trans-SNARE complexes. Biophys J 95(3):1295–1302. https://doi.org/10.1529/biophysj.108.129510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207. https://doi.org/10.1038/nature11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matos MF, Mukherjee K, Chen X et al (2003) Evidence for SNARE zippering during Ca2+−triggered exocytosis in PC12 cells. Neuropharmacology 45(6):777–786. https://doi.org/10.1016/s0028-3908(03)00318-6

    Article  CAS  PubMed  Google Scholar 

  8. Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20(14):4093–4099. https://doi.org/10.1021/bi00517a023

    Article  CAS  PubMed  Google Scholar 

  9. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9(7):543–556. https://doi.org/10.1038/nrm2417

    Article  CAS  PubMed  Google Scholar 

  10. Cypionka A, Stein A, Hernandez JM et al (2009) Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS. Proc Natl Acad Sci U S A 106(44):18575–18580. https://doi.org/10.1073/pnas.0906677106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rigaud J-L, Lévy D (2003) Reconstitution of membrane proteins into liposomes. In: Methods in enzymology, vol 372. Academic, pp 65–86. https://doi.org/10.1016/S0076-6879(03)72004-7

    Chapter  Google Scholar 

  12. Wang L, Tonggu L (2015) Membrane protein reconstitution for functional and structural studies. Sci China Life Sci 58(1):66–74. https://doi.org/10.1007/s11427-014-4769-0

    Article  CAS  PubMed  Google Scholar 

  13. Stein A, Radhakrishnan A, Riedel D et al (2007) Synaptotagmin activates membrane fusion through a Ca2+−dependent trans interaction with phospholipids. Nat Struct Mol Biol 14(10):904–911. https://doi.org/10.1038/nsmb1305

    Article  CAS  PubMed  Google Scholar 

  14. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66(2):375–400

    Article  CAS  Google Scholar 

  15. Carles J (1956) Colorimetric microdetermination of phosphorus. Bull Soc Chim Biol 38(1):255–257

    CAS  Google Scholar 

  16. Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Opt Commun 134(1):371–378. https://doi.org/10.1016/S0030-4018(96)00384-7

  17. Rizo J, Chen XC, Arac D (2006) Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16(7):339–350. https://doi.org/10.1016/j.tcb.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  18. Zimmerberg J, Chernomordik LV (1999) Membrane fusion. Adv Drug Deliv Rev 38(3):197–205. https://doi.org/10.1016/s0169-409x(99)00029-0

    Article  CAS  PubMed  Google Scholar 

  19. van den Bogaart G, Holt MG, Bunt G et al (2010) One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 17(3):358–364. https://doi.org/10.1038/nsmb.1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubrich BE, Kumar P, Neitz H et al (2018) PNA hybrid sequences as recognition units in SNARE-protein-mimicking peptides. Angew Chem Int Ed Engl 57(45):14932–14936. https://doi.org/10.1002/anie.201805752

    Article  CAS  PubMed  Google Scholar 

  21. Lin CC, Seikowski J, Perez-Lara A et al (2014) Control of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance ruler. Nat Commun 5:5859. https://doi.org/10.1038/ncomms6859

    Article  CAS  PubMed  Google Scholar 

  22. Vennekate W, Schroder S, Lin CC et al (2012) Cis- and trans-membrane interactions of synaptotagmin-1. Proc Natl Acad Sci U S A 109(27):11037–11042. https://doi.org/10.1073/pnas.1116326109

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Walla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grothe, T., Walla, P.J. (2022). Fluorescence Lifetime and Cross-correlation Spectroscopy for Observing Membrane Fusion of Liposome Models Containing Synaptic Proteins. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics