Skip to main content

Strategies for Efficient RNAi-Based Gene Silencing of Viral Genes for Disease Resistance in Plants

  • Protocol
  • First Online:
Plant Gene Silencing

Abstract

RNA interference (RNAi) is an evolutionarily conserved gene silencing mechanism in eukaryotes including fungi, plants, and animals. In plants, gene silencing regulates gene expression, provides genome stability, and protect against invading viruses. During plant virus interaction, viral genome derived siRNAs (vsiRNA) are produced to mediate gene silencing of viral genes to prevent virus multiplication. After the discovery of RNAi phenomenon in eukaryotes, it is used as a powerful tool to engineer plant viral disease resistance against both RNA and DNA viruses. Despite several successful reports on employing RNA silencing methods to engineer plant for viral disease resistance, only a few of them have reached the commercial stage owing to lack of complete protection against the intended virus. Based on the knowledge accumulated over the years on genetic engineering for viral disease resistance, there is scope for effective viral disease control through careful design of RNAi gene construct. The selection of target viral gene(s) for developing the hairpin RNAi (hp-RNAi) construct is very critical for effective protection against the viral disease. Different approaches and bioinformatics tools which can be employed for effective target selection are discussed. The selection of suitable target regions for RNAi vector construction can help to achieve a high level of transgenic virus resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duan C-G, Wang C-H, Guo H-S (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760

    Article  CAS  PubMed  Google Scholar 

  3. Llave C, Kasschau KD, Carrington JC (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci U S A 97:13401–13406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Head SR, Komori HK, LaMere SA et al (2014) Library construction for next-generation sequencing: overviews and challenges. BioTechniques 56:61–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonsalves D (2006) Transgenic papaya: development, release, impact and challenges. Adv Virus Res 67:317–354

    Article  CAS  PubMed  Google Scholar 

  6. Lindbo JA, Falk BW (2017) The impact of “coat protein-mediated virus resistance” in applied plant pathology and basic research. Phytopathology 107:624–634

    Article  PubMed  Google Scholar 

  7. De Faria JC, Aragão FJL, Souza T et al (2016) Golden mosaic of common beans in Brazil: management with a transgenic approach. EmbrapaArroz e Feijão-Artigoemperiódicoindexado

    Google Scholar 

  8. Kung Y-J, You B-J, Raja JAJ et al (2015) Nucleotide sequence-homology-independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Sci Rep 5:9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuentes A, Carlos N, Ruiz Y et al (2016) Field trial and molecular characterization of RNAi-transgenic tomato plants that exhibit resistance to tomato yellow leaf curl geminivirus. Mol Plant-Microbe Interact 29:197–209

    Article  CAS  PubMed  Google Scholar 

  10. Mehta D, Stürchler A, Anjanappa RB et al (2019) Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol 20:80

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pitzalis N, Heinlein M (2018) The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. J Exp Bot 69:117–132

    Article  CAS  Google Scholar 

  12. Molnár A, Csorba T, Lakatos L et al (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pooggin MM (2013) How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int J Mol Sci 14:15233–15259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Moissiard G, Voinnet O (2006) RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci U S A 103:19593–19598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blevins T, Rajeswaran R, Shivaprasad PV et al (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deleris A, Gallego-Bartolome J, Bao J et al (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Ruiz H, Takeda A, Chapman EJ et al (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22:481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732–14737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang M-B, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant-Microbe Interact 25:1275–1285

    Article  CAS  PubMed  Google Scholar 

  20. Carbonell A, Fahlgren N, Garcia-Ruiz H et al (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24:3613–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wassenegger M (2000) RNA-directed DNA methylation. In: Plant gene silencing. Springer, pp 83–100

    Chapter  Google Scholar 

  22. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Incarbone M, Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18:382–392

    Article  CAS  PubMed  Google Scholar 

  24. Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492

    Article  CAS  PubMed  Google Scholar 

  25. Wieczorek P, Obrępalska-Stęplowska A (2015) Suppress to survive—implication of plant viruses in PTGS. Plant Mol Biol Report 33:335–346

    Article  PubMed  Google Scholar 

  26. Himber C, Dunoyer P, Moissiard G et al (2003) Transitivity-dependent and-independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dunoyer P, Himber C, Ruiz-Ferrer V et al (2007) Intra-and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat Genet 39:848–856

    Article  CAS  PubMed  Google Scholar 

  28. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance—deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  29. Abel PP, Nelson RS, De B et al (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  30. Lindbo JA, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    Article  CAS  PubMed  Google Scholar 

  31. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  CAS  PubMed  Google Scholar 

  32. Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  CAS  PubMed  Google Scholar 

  33. Pooggin MM (2017) RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 26:28–35

    Article  CAS  PubMed  Google Scholar 

  34. Hamilton AJ, Brown S, Yuanhai H et al (1998) A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J 15:737–746

    Article  CAS  PubMed  Google Scholar 

  35. Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wesley SV, Helliwell CA, Smith NA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  37. Smith NA et al (2000) Gene expression—total silencing by intron-spliced hairpin RNAs. Nature 407:319320

    Google Scholar 

  38. Chen Y-K, Lohuis D, Goldbach R, Prins M (2004) High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Mol Breed 14:215–226

    Article  Google Scholar 

  39. Ramesh SV, Mishra AK, Praveen S (2007) Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17:251–257

    Article  CAS  PubMed  Google Scholar 

  40. Seemanpillai M, Dry I, Randles J, Rezaian A (2003) Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant-Microbe Interact 16:429–438

    Article  CAS  PubMed  Google Scholar 

  41. Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    Article  CAS  PubMed  Google Scholar 

  42. Aragão FJL, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    Article  PubMed  CAS  Google Scholar 

  43. Valli AA, Gallo A, Rodamilans B et al (2018) The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. Mol Plant Pathol 19:744–763

    Article  PubMed  Google Scholar 

  44. Schoelz JE, Angel CA, Nelson RS, Leisner SM (2016) A model for intracellular movement of Cauliflower mosaic virus: the concept of the mobile virion factory. J Exp Bot 67:2039–2048

    Article  CAS  PubMed  Google Scholar 

  45. Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant-Microbe Interact 15:826–833

    Article  CAS  PubMed  Google Scholar 

  46. Dalakouras A, Tzanopoulou M, Tsagris M et al (2011) Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Res 20:293–304

    Article  CAS  PubMed  Google Scholar 

  47. Beyene G, Chauhan RD, Ilyas M et al (2017) A virus-derived stacked RNAi construct confers robust resistance to cassava brown streak disease. Front Plant Sci 7:2052

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wagaba H, Beyene G, Aleu J et al (2017) Field level RNAi-mediated resistance to Cassava brown streak disease across multiple cropping cycles and diverse East African agro-ecological locations. Front Plant Sci 7:2060

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hameed A, Tahir MN, Asad S et al (2017) RNAi-mediated simultaneous resistance against three RNA viruses in potato. Mol Biotechnol 59:73–83

    Article  CAS  PubMed  Google Scholar 

  50. Tatineni S, Sato S, Nersesian N et al (2020) Transgenic wheat harboring an RNAi element confers dual resistance against synergistically interacting wheat streak mosaic virus and triticum mosaic virus. Mol Plant-Microbe Interact 33:108–122

    Article  CAS  PubMed  Google Scholar 

  51. Noris E, Lucioli A, Tavazza R et al (2004) Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J Gen Virol 85:1745–1749

    Article  CAS  PubMed  Google Scholar 

  52. Leibman D, Wolf D, Saharan V et al (2011) A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits. Mol Plant-Microbe Interact 24:1220–1238

    Article  CAS  PubMed  Google Scholar 

  53. Ahmad A, Zia-Ur-Rehman M, Hameed U et al (2017) Engineered disease resistance in cotton using RNA-interference to knock down Cotton leaf curl Kokhran virus-Burewala and Cotton leaf curl Multan betasatellite expression. Viruses 9:257

    Article  PubMed Central  CAS  Google Scholar 

  54. Kumar S, Tanti B, Patil BL et al (2017) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS One 12:e0186786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mahmoudieh M, Noor MRM, Harikrishna JA, Othman RY (2019) Tomato Solanumlycopersicum expressing the overlapping regions of three begomovirus genes exhibit resistance to Ageratum yellow vein Malaysia virus. Physiol Mol Plant Pathol 108:101425

    Article  CAS  Google Scholar 

  56. Yang Y, Liu T, Shen D et al (2019) Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog 15:e1007534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Debbarma R (2019) Studies on genetic transformation of banana for imparting banana bunchy top virus resistance. Dissertation, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  58. Cillo F, Palukaitis P (2014) Transgenic resistance. In: Advances in virus research. Elsevier, pp 35–146

    Google Scholar 

  59. Liu YP, Haasnoot J, Berkhout B (2007) Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 35:5683–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dang TVT, Windelinckx S, Henry IM et al (2014) Assessment of RNAi-induced silencing in banana (Musa spp.). BMC Res Notes 7:655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Szittya G, Moxon S, Pantaleo V et al (2010) Structural and functional analysis of viral siRNAs. PLoS Pathog 6:e1000838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Miozzi L, Gambino G, Burgyan J, Pantaleo V (2013) Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Mol Plant Pathol 14:30–43

    Article  CAS  PubMed  Google Scholar 

  63. Blevins T, Rajeswaran R, Aregger M et al (2011) Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39:5003–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao D, Song G (2014) Rootstock-to-scion transfer of transgene-derived small interfering RNA s and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnol J 12:1319–1328

    Article  CAS  PubMed  Google Scholar 

  65. Rajeswaran R, Golyaev V, Seguin J et al (2014) Interactions of Rice tungro bacilliform pararetrovirus and its protein P4 with plant RNA-silencing machinery. Mol Plant-Microbe Interact 27:1370–1378

    Article  PubMed  CAS  Google Scholar 

  66. Gago-Zachert S, Schuck J, Weinholdt C et al (2019) Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro. Nucleic Acids Res 47:9343–9357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith NA, Eamens AL, Wang M-B (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang M, Xu Z, Zhao W et al (2018) Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus. BMC Plant Biol 18:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramesh SV, Williams S, Kappagantu M et al (2017) Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Res 238:13–23

    Article  CAS  PubMed  Google Scholar 

  71. Malik I, Garrido M, Bähr M et al (2006) Comparison of test systems for RNA interference. Biochem Biophys Res Commun 341:245–253

    Article  CAS  PubMed  Google Scholar 

  72. Casacuberta JM, Devos Y, Du Jardin P et al (2015) Biotechnological uses of RNAi in plants: risk assessment considerations. Trends Biotechnol 33:145–147

    Article  CAS  PubMed  Google Scholar 

  73. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  CAS  PubMed  Google Scholar 

  74. Wu H-J, Ma Y-K, Chen T et al (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang J, Tang Y, Yang Y et al (2016) Cotton leaf curl Multan virus-derived viral small RNAs can target cotton genes to promote viral infection. Front Plant Sci 7:1162

    PubMed  PubMed Central  Google Scholar 

  76. Ahmed F, Senthil-Kumar M, Dai X et al (2020) pssRNAit-a web server for designing effective and specific plant siRNAs with genome-wide off-target assessment. Plant Physiol 184:65–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support from DBT-BIRAC, DBT-NER and ICAR-NPFGGM are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugam Varanavasiappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, K.K., Varanavasiappan, S., Arul, L., Kokiladevi, E., Sudhakar, D. (2022). Strategies for Efficient RNAi-Based Gene Silencing of Viral Genes for Disease Resistance in Plants. In: Mysore, K.S., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 2408. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1875-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1875-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1874-5

  • Online ISBN: 978-1-0716-1875-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics