Skip to main content

TGF-β Signaling Supports HIV Latency in a Memory CD4+ T Cell Based In Vitro Model

  • Protocol
  • First Online:
HIV Reservoirs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2407))

Abstract

During antiretroviral therapy (ART), HIV-1 persists as a latent reservoir in CD4+ T cell subsets in central (TCM), transitional (TTM) and effector memory (TEM) CD4+ T cells. Understanding the mechanisms that support HIV-1 latency in each of these subsets is essential to the identification of cure strategies to eliminate them. Due to the very low frequency of latently infected cells in vivo, model systems that can accurately reflect the heterogenous population of HIV-1 infected cells are a critical component in HIV cure discoveries. Here, we describe a novel primary cell-based model of HIV-1 latency that recapitulates the complex dynamics of the establishment and maintenance of the latent reservoir in different memory T cell subsets. The latency and reversion assay (LARA ) culture conditions uniquely retain phenotypically and transcriptionally distinct memory CD4+ T cell subsets that allow in a single assay to assess LRA activity in each memory subset and differential examination of the dynamics of HIV latency reversal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kulpa DA, Chomont N (2015) HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad 1(2):59–66

    Article  PubMed  PubMed Central  Google Scholar 

  2. Westera L, Drylewicz J, den Braber I, Mugwagwa T, van der Maas I, Kwast L, Volman T, van de Weg-Schrijver EH, Bartha I, Spierenburg G, Gaiser K, Ackermans MT, Asquith B, de Boer RJ, Tesselaar K, Borghans JA (2013) Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans. Blood 122(13):2205–2212. https://doi.org/10.1182/blood-2013-03-488411

    Article  CAS  PubMed  Google Scholar 

  3. Sacha JB, Ndhlovu LC (2016) Strategies to target non-T-cell HIV reservoirs. Curr Opin HIV AIDS 11(4):376–382. https://doi.org/10.1097/COH.0000000000000283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kandathil AJ, Sugawara S, Balagopal A (2016) Are T cells the only HIV-1 reservoir? Retrovirology 13(1):86. https://doi.org/10.1186/s12977-016-0323-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM (2018) HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J Neurovirol 24(2):192–203. https://doi.org/10.1007/s13365-017-0604-2

    Article  CAS  PubMed  Google Scholar 

  6. Sadowski I, Hashemi FB (2019) Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 76(18):3583–3600. https://doi.org/10.1007/s00018-019-03156-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, Boucher G, Boulassel MR, Ghattas G, Brenchley JM, Schacker TW, Hill BJ, Douek DC, Routy JP, Haddad EK, Sekaly RP (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15(8):893–900. https://doi.org/10.1038/nm.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chomont N, DaFonseca S, Vandergeeten C, Ancuta P, Sekaly RP (2011) Maintenance of CD4+ T-cell memory and HIV persistence: keeping memory, keeping HIV. Curr Opin HIV AIDS 6(1):30–36. https://doi.org/10.1097/COH.0b013e3283413775

    Article  PubMed  Google Scholar 

  9. Buzon MJ, Sun H, Li C, Shaw A, Seiss K, Ouyang Z, Martin-Gayo E, Leng J, Henrich TJ, Li JZ, Pereyra F, Zurakowski R, Walker BD, Rosenberg ES, Yu XG, Lichterfeld M (2014) HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med 20(2):139–142. https://doi.org/10.1038/nm.3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bacchus C, Cheret A, Avettand-Fenoel V, Nembot G, Melard A, Blanc C, Lascoux-Combe C, Slama L, Allegre T, Allavena C, Yazdanpanah Y, Duvivier C, Katlama C, Goujard C, Seksik BC, Leplatois A, Molina JM, Meyer L, Autran B, Rouzioux C, group OAs (2013) A single HIV-1 cluster and a skewed immune homeostasis drive the early spread of HIV among resting CD4+ cell subsets within one month post-infection. PLoS One 8(5):e64219. https://doi.org/10.1371/journal.pone.0064219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yukl SA, Shergill AK, Ho T, Killian M, Girling V, Epling L, Li P, Wong LK, Crouch P, Deeks SG, Havlir DV, McQuaid K, Sinclair E, Wong JK (2013) The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence. J Infect Dis 208(8):1212–1220. https://doi.org/10.1093/infdis/jit308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, Potard V, Versmisse P, Melard A, Prazuck T, Descours B, Guergnon J, Viard JP, Boufassa F, Lambotte O, Goujard C, Meyer L, Costagliola D, Venet A, Pancino G, Autran B, Rouzioux C, Group AVS (2013) Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLoS Pathog 9(3):e1003211. https://doi.org/10.1371/journal.ppat.1003211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R (2018) Barriers for HIV cure: the latent reservoir. AIDS Res Hum Retrovir 34(9):739–759. https://doi.org/10.1089/AID.2018.0118

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shan L, Siliciano RF (2013) From reactivation of latent HIV-1 to elimination of the latent reservoir: the presence of multiple barriers to viral eradication. BioEssays 35(6):544–552. https://doi.org/10.1002/bies.201200170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill AL (2018) Mathematical models of HIV latency. Curr Top Microbiol Immunol 417:131–156. https://doi.org/10.1007/82_2017_77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lucic B, Lusic M (2016) Connecting HIV-1 integration and transcription: a step toward new treatments. FEBS Lett 590(13):1927–1939. https://doi.org/10.1002/1873-3468.12226

    Article  CAS  PubMed  Google Scholar 

  17. Sgarbanti M, Battistini A (2013) Therapeutics for HIV-1 reactivation from latency. Curr Opin Virol 3(4):394–401. https://doi.org/10.1016/j.coviro.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  18. Thorlund K, Horwitz MS, Fife BT, Lester R, Cameron DW (2017) Landscape review of current HIV ‘kick and kill’ cure research - some kicking, not enough killing. BMC Infect Dis 17(1):595. https://doi.org/10.1186/s12879-017-2683-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Margolis DM, Archin NM (2017) Proviral latency, persistent human immunodeficiency virus infection, and the development of latency reversing agents. J Infect Dis 215(suppl_3):S111–S118. https://doi.org/10.1093/infdis/jiw618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim Y, Anderson JL, Lewin SR (2018) Getting the "kill" into "shock and kill": strategies to eliminate latent HIV. Cell Host Microbe 23(1):14–26. https://doi.org/10.1016/j.chom.2017.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crooks AM, Bateson R, Cope AB, Dahl NP, Griggs MK, Kuruc JD, Gay CL, Eron JJ, Margolis DM, Bosch RJ, Archin NM (2015) Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J Infect Dis 212(9):1361–1365. https://doi.org/10.1093/infdis/jiv218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M, Greene WC, Kashuba A, Lewin SR, Margolis DM, Mau M, Ruelas D, Saleh S, Shirakawa K, Siliciano RF, Singhania A, Soto PC, Terry VH, Verdin E, Woelk C, Wooden S, Xing S, Planelles V (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9(12):e1003834. https://doi.org/10.1371/journal.ppat.1003834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xing S, Bullen CK, Shroff NS, Shan L, Yang HC, Manucci JL, Bhat S, Zhang H, Margolick JB, Quinn TC, Margolis DM, Siliciano JD, Siliciano RF (2011) Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Virol 85(12):6060–6064. https://doi.org/10.1128/JVI.02033-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rasmussen TA, Lewin SR (2016) Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 11(4):394–401. https://doi.org/10.1097/COH.0000000000000279

    Article  CAS  PubMed  Google Scholar 

  25. Spivak AM, Planelles V (2018) Novel latency reversal agents for HIV-1 cure. Annu Rev Med 69:421–436. https://doi.org/10.1146/annurev-med-052716-031710

    Article  CAS  PubMed  Google Scholar 

  26. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159. https://doi.org/10.1146/annurev.immunol.23.021704.115628

    Article  CAS  PubMed  Google Scholar 

  27. Pepper M, Jenkins MK (2011) Origins of CD4(+) effector and central memory T cells. Nat Immunol 12(6):467–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Riou C, Yassine-Diab B, Van Grevenynghe J, Somogyi R, Greller LD, Gagnon D, Gimmig S, Wilkinson P, Shi Y, Cameron MJ, Campos-Gonzalez R, Balderas RS, Kelvin D, Sekaly RP, Haddad EK (2007) Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J Exp Med 204(1):79–91. https://doi.org/10.1084/jem.20061681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Macallan DC, Wallace D, Zhang Y, De Lara C, Worth AT, Ghattas H, Griffin GE, Beverley PC, Tough DF (2004) Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J Exp Med 200(2):255–260. https://doi.org/10.1084/jem.20040341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96(9):5215–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lees JR, Farber DL (2010) Generation, persistence and plasticity of CD4 T-cell memories. Immunology 130(4):463–470. https://doi.org/10.1111/j.1365-2567.2010.03288.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kulpa DA, Talla A, Brehm JH, Ribeiro SP, Yuan S, Bebin-Blackwell AG, Miller M, Barnard R, Deeks SG, Hazuda D, Chomont N, Sekaly RP (2019) Differentiation into an effector memory phenotype potentiates HIV-1 latency reversal in CD4(+) T cells. J Virol 93(24):e00969-19. https://doi.org/10.1128/JVI.00969-19

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163(5):1037–1050

    Article  CAS  PubMed  Google Scholar 

  34. Tiemessen MM, Kunzmann S, Schmidt-Weber CB, Garssen J, Bruijnzeel-Koomen CA, Knol EF, van Hoffen E (2003) Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response. Int Immunol 15(12):1495–1504

    Article  CAS  PubMed  Google Scholar 

  35. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161. https://doi.org/10.1146/annurev.immunol.16.1.137

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Giangreco L, Broome HE, Dargan CM, Swain SL (1995) Control of CD4 effector fate: transforming growth factor beta 1 and interleukin 2 synergize to prevent apoptosis and promote effector expansion. J Exp Med 182(3):699–709

    Article  CAS  PubMed  Google Scholar 

  37. Cerwenka A, Kovar H, Majdic O, Holter W (1996) Fas- and activation-induced apoptosis are reduced in human T cells preactivated in the presence of TGF-beta 1. J Immunol 156(2):459–464

    CAS  PubMed  Google Scholar 

  38. Wang FX, Xu Y, Sullivan J, Souder E, Argyris EG, Acheampong EA, Fisher J, Sierra M, Thomson MM, Najera R, Frank I, Kulkosky J, Pomerantz RJ, Nunnari G (2005) IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 115(1):128–137. https://doi.org/10.1172/JCI22574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vandergeeten C, Fromentin R, DaFonseca S, Lawani MB, Sereti I, Lederman MM, Ramgopal M, Routy JP, Sekaly RP, Chomont N (2013) Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 121(21):4321–4329. https://doi.org/10.1182/blood-2012-11-465625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. He T, Brocca-Cofano E, Policicchio BB, Sivanandham R, Gautam R, Raehtz KD, Xu C, Pandrea I, Apetrei C (2016) Cutting edge: T regulatory cell depletion reactivates latent simian immunodeficiency virus (SIV) in controller macaques while boosting SIV-specific T lymphocytes. J Immunol 197(12):4535–4539. https://doi.org/10.4049/jimmunol.1601539

    Article  CAS  PubMed  Google Scholar 

  41. Ebert EC (1999) Inhibitory effects of transforming growth factor-beta (TGF-beta) on certain functions of intraepithelial lymphocytes. Clin Exp Immunol 115(3):415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sahu GK, Lee K, Ji J, Braciale V, Baron S, Cloyd MW (2006) A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology 355(2):127–137

    Article  CAS  PubMed  Google Scholar 

  43. Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 84(13):6425–6437. https://doi.org/10.1128/JVI.01519-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khattar M, Miyahara Y, Schroder PM, Xie A, Chen W, Stepkowski SM (2014) Interleukin-21 is a critical regulator of CD4 and CD8 T cell survival during priming under Interleukin-2 deprivation conditions. PLoS One 9(1):e85882. https://doi.org/10.1371/journal.pone.0085882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vandergeeten C, Fromentin R, Merlini E, Lawani MB, DaFonseca S, Bakeman W, McNulty A, Ramgopal M, Michael N, Kim JH, Ananworanich J, Chomont N (2014) Cross-clade ultrasensitive PCR-based assays to measure HIV persistence in large-cohort studies. J Virol 88(21):12385–12396. https://doi.org/10.1128/JVI.00609-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG, Strain MC, Richman DD, O’Doherty U, Palmer S, Hecht FM, Hoh R, Barnard RJ, Miller MD, Hazuda DJ, Deeks SG, Sekaly RP, Chomont N (2015) A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine 2(8):874–883. https://doi.org/10.1016/j.ebiom.2015.06.019

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanna A. Kulpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bergstresser, S., Kulpa, D.A. (2022). TGF-β Signaling Supports HIV Latency in a Memory CD4+ T Cell Based In Vitro Model. In: Poli, G., Vicenzi, E., Romerio, F. (eds) HIV Reservoirs. Methods in Molecular Biology, vol 2407. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1871-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1871-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1870-7

  • Online ISBN: 978-1-0716-1871-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics