Skip to main content

Electrochemical Impedance Spectroscopy as a Convenient Tool to Characterize Tethered Bilayer Membranes

  • Protocol
  • First Online:
Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2402))

Abstract

In this paper, we describe the application of electrochemical impedance spectroscopy (EIS) to characterize process of formation and properties of solid-supported tethered bilayer membranes on solid conducting substrates. Along with the description of experimental procedures to prepare substrates and self-assembly of phospholipid bilayers onto gold-coated glass slides, we describe the detailed protocols of EIS measurements. We demonstrate the utility of EIS in the evaluation of the properties of both molecular anchor layers used to immobilize tBLMs as well as characterization of tBLMs. We show that the EIS methodology extends the applicability of this technique well beyond the mere evaluation of electric parameters. Specifically, we demonstrate how by using EIS one may evaluate both density and size of water-filled defects (ion-channels) in tBLMs, to determine the structural mode (homogeneous, heterogeneous, or clustered) of distribution of defects in tBLMs. Our methodology can be applied in both basic protein membrane interaction studies, as well as in the development of precision biosensoric systems with tBLMs as a sensing element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Veneziano R, Rossi C, Chenal A et al (2017) Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (review). Biointerphases 12:04E301. https://doi.org/10.1116/1.4994299

    Article  CAS  PubMed  Google Scholar 

  2. Ragaliauskas T, Plečkaitytė M, Jankunec M et al (2019) Inerolysin and vaginolysin, the cytolysins implicated in vaginal dysbiosis, differently impair molecular integrity of phospholipid membranes. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-47043-5

    Article  CAS  Google Scholar 

  3. Alvarez-Malmagro J, García-Molina G, López De Lacey A (2020) Electrochemical biosensors based on membrane-bound enzymes in biomimetic configurations. Sensors 20:3393. https://doi.org/10.3390/s20123393

    Article  CAS  PubMed Central  Google Scholar 

  4. Zhan W, Jiang K, Smith MD et al (2010) Photocurrent generation from porphyrin/fullerene complexes assembled in a tethered lipid bilayer. Langmuir 26:15671–15679. https://doi.org/10.1021/la102884u

    Article  CAS  PubMed  Google Scholar 

  5. Jackman J, Knoll W, Cho N-J (2012) Biotechnology applications of tethered lipid bilayer membranes. Materials (Basel) 5:2637–2657. https://doi.org/10.3390/ma5122637

    Article  CAS  Google Scholar 

  6. McGillivray DJ, Valincius G, Vanderah DJ et al (2007) Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes. Biointerphases 2:21–33. https://doi.org/10.1116/1.2709308

    Article  CAS  PubMed  Google Scholar 

  7. Dupuy FG, Pagano I, Andenoro K et al (2018) Selective interaction of Colistin with lipid model membranes. Biophys J 114:919–928. https://doi.org/10.1016/j.bpj.2017.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su Z, Leitch JJ, Lipkowski J (2018) Electrode-supported biomimetic membranes: an electrochemical and surface science approach for characterizing biological cell membranes. Curr Opin Electrochem 12:60–72. https://doi.org/10.1016/j.coelec.2018.05.020

    Article  CAS  Google Scholar 

  9. Budvytyte R, Pleckaityte M, Zvirbliene A et al (2013) Reconstitution of cholesterol-dependent Vaginolysin into tethered phospholipid bilayers: implications for bioanalysis. PLoS One 8:e82536. https://doi.org/10.1371/journal.pone.0082536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ragaliauskas T, Mickevicius M, Rakovska B et al (2017) Fast formation of low-defect-density tethered bilayers by fusion of multilamellar vesicles. Biochim Biophys Acta Biomembr 1859:669–678. https://doi.org/10.1016/j.bbamem.2017.01.015

    Article  CAS  PubMed  Google Scholar 

  11. Budvytyte R, Mickevicius M, Vanderah DJ et al (2013) Modification of tethered bilayers by phospholipid exchange with vesicles. Langmuir 29:4320–4327. https://doi.org/10.1021/la304613a

    Article  CAS  PubMed  Google Scholar 

  12. Valincius G, Meškauskas T, Ivanauskas F (2012) Electrochemical impedance spectroscopy of tethered bilayer membranes. Langmuir 28:977–990. https://doi.org/10.1021/la204054g

    Article  CAS  PubMed  Google Scholar 

  13. Raila T, Penkauskas T, Jankunec M et al (2019) Electrochemical impedance of randomly distributed defects in tethered phospholipid bilayers: finite element analysis. Electrochim Acta 299:863–874. https://doi.org/10.1016/j.electacta.2018.12.148

    Article  CAS  Google Scholar 

  14. Raila T, Ambrulevičius F, Penkauskas T et al (2020) Clusters of protein pores in phospholipid bilayer membranes can be identified and characterized by electrochemical impedance spectroscopy. Electrochim Acta 364:137179. https://doi.org/10.1016/j.electacta.2020.137179

    Article  CAS  Google Scholar 

  15. Valincius G, Mickevicius M (2015) Tethered phospholipid bilayer membranes: An Interpretation of the Electrochemical Impedance response, in: A. Iglič (Ed.) Advances in Planar Lipid Bilayers and Liposomes, Elsevier, 2015, pp. 27–61

    Google Scholar 

  16. Valincius G, Mickevicius M, Penkauskas T, Jankunec M (2016) Electrochemical impedance spectroscopy of tethered bilayer membranes: an effect of heterogeneous distribution of defects in membranes. Electrochim Acta 222:904–913. https://doi.org/10.1016/j.electacta.2016.11.056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gintaras Valinčius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Penkauskas, T., Ambrulevičius, F., Valinčius, G. (2022). Electrochemical Impedance Spectroscopy as a Convenient Tool to Characterize Tethered Bilayer Membranes. In: Cranfield, C.G. (eds) Membrane Lipids. Methods in Molecular Biology, vol 2402. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1843-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1843-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1842-4

  • Online ISBN: 978-1-0716-1843-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics