Skip to main content

Modeling Plant Tissue Development Using VirtualLeaf

  • Protocol
  • First Online:
Plant Systems Biology

Abstract

Cell-based computational modeling and simulation are becoming invaluable tools in analyzing plant development. In a cell-based simulation model, the inputs are behaviors and dynamics of individual cells and the rules describing responses to signals from adjacent cells. The outputs are the growing tissues, shapes, and cell-differentiation patterns that emerge from the local, chemical, and biomechanical cell-cell interactions. In this updated and extended version of our previous chapter on VirtualLeaf (Merks and Guravage, Methods in Molecular Biology 959, 333–352), we present a step-by-step, practical tutorial for building cell-based simulations of plant development and for analyzing the influence of parameters on simulation outcomes by systematically changing the values of the parameters and analyzing each outcome. We show how to build a model of a growing tissue, a reaction–diffusion system on a growing domain, and an auxin transport model. Moreover, in addition to the previous publication, we demonstrate how to run a Turing system on a regular, rectangular lattice, and how to run parameter sweeps. The aim of VirtualLeaf is to make computational modeling more accessible to experimental plant biologists with relatively little computational background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Merks RMH, Guravage M, Inzé D, Beemster GTS (2011) VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155:656–666. https://doi.org/10.1104/pp.110.167619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinohl V et al (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447. https://doi.org/10.1038/msb.2010.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Mourik S, Kaufmann K, Van Dijk ADJ, Angenent GC, Merks RMH, Molenaar J (2012) Simulation of organ patterning on the floral meristem using a polar auxin transport model. PLoS One 7:e28762. https://doi.org/10.1371/journal.pone.0028762.s018

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Vos D, Vissenberg K, Broeckhove J, Beemster GTS (2014) Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root? PLoS Comput Biol 10:e1003910. https://doi.org/10.1371/journal.pcbi.1003910.s017

    Article  PubMed  PubMed Central  Google Scholar 

  5. De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O et al (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:1255215. https://doi.org/10.1126/science.1255215

    Article  CAS  PubMed  Google Scholar 

  6. Draelants D, Avitabile D, Vanroose W (2015) Localized auxin peaks in concentration-based transport models of the shoot apical meristem. J R Soc Interface 12:20141407. https://doi.org/10.1098/rsif.2014.1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giannino F, Mele BH, De Micco V, Toraldo G, Mazzoleni S, Cartenì F (2019) An individual based model of wound closure in plant stems. IEEE Access IEEE 7:65821–65827. https://doi.org/10.1109/ACCESS.2019.2915575

    Article  Google Scholar 

  8. Kneuper I, Teale W, Dawson JE, Tsugeki R, Katifori E, Palme K et al (2021) Auxin biosynthesis and cellular efflux act together to regulate leaf vein patterning. J Exp Bot 72:1151–1165. https://doi.org/10.1093/jxb/eraa501

    Article  CAS  PubMed  Google Scholar 

  9. Lebovka I, Hay Mele B, Zakieva A, Gursanscky N, Merks R, Greb T (2020). Computational modelling of cambium activity provides a regulatory framework for simulating radial plant growth. bioRxiv 2020.01.16.908715. https://doi.org/10.1101/2020.01.16.908715

  10. De Vos D, Dzhurakhalov A, Stijven S, Klosiewicz P, Beemster GTS, Broeckhove J (2017) Virtual plant tissue: building blocks for next-generation plant growth simulation. Front Plant Sci 8:686. https://doi.org/10.3389/fpls.2017.00686

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolff HB, Davidson LA, Merks RMH (2019) Adapting a plant tissue model to animal development: introducing cell sliding into VirtualLeaf. Bull Math Biol 81:3322–3341. https://doi.org/10.1007/s11538-019-00599-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Merks RMH, Guravage MA (2012) Building simulation models of developing plant organs using VirtualLeaf. In: Methods in molecular biology. Humana Press, Totowa, NJ, pp 333–352. https://doi.org/10.1007/978-1-62703-221-6_23

    Chapter  Google Scholar 

  13. Grieneisen VA, Scheres B (2009) Back to the future: evolution of computational models in plant morphogenesis. Curr Opin Plant Biol 12:606–614. https://doi.org/10.1016/j.pbi.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  14. Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M (2014) Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat Commun 6:6450–6450. https://doi.org/10.1038/ncomms7450

    Article  CAS  Google Scholar 

  15. Cheddadi I, Génard M, Bertin N, Godin C (2019) Coupling water fluxes with cell wall mechanics in a multicellular model of plant development. PLoS Comput Biol 15:e1007121–e1007116. https://doi.org/10.1371/journal.pcbi.1007121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska A-L et al (2019) A Growth-Based Framework for Leaf Shape Development and Diversity. Cell 177:1405–1418.e17. https://doi.org/10.1016/j.cell.2019.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mellor NL, Voss U, Janes G, Bennett MJ, Wells DM, Band LR (2020) Auxin fluxes through plasmodesmata modify root-tip auxin distribution. Development 147:dev181669. https://doi.org/10.1242/dev.181669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moret B, Marhava P, Aliaga Fandino AC, Hardtke CS, Ten Tusscher KHWJ (2020) Local auxin competition explains fragmented differentiation patterns. Nat Commun 11:2965. https://doi.org/10.1038/s41467-020-16803-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Refahi Y, Zardilis A, Michelin G, Wightman R, Leggio B, Legrand J et al (2021) A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Develop Cell 56:540–556.e8. https://doi.org/10.1016/j.devcel.2021.01.019

    Article  CAS  Google Scholar 

  20. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  Google Scholar 

  21. Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Physica A 352:113–130. https://doi.org/10.1016/j.physa.2004.12.028

    Article  CAS  Google Scholar 

  22. Merks RMH (2011) Cell-based modeling. In: Engquist B (ed) Encyclopedia of applied and computational mathematics. Springer-Verlag, Berlin, Germany. pp 1–9. https://doi.org/10.1007/978-3-540-70529-1

  23. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  CAS  Google Scholar 

  24. Turing AM (1952) The chemical basis of morphogenesis. Phil Trans Roy Soc B 237:37–72

    Google Scholar 

  25. Süli A, Mayers D (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  26. Meinhardt H (1976) Morphogenesis of lines and nets. Differentiation 6:117–123

    Article  CAS  Google Scholar 

  27. Benitez M, Espinosa-Soto C, Padilla-Longoria P, Díaz J, Alvarez-Buylla ER (2007) Equivalent genetic regulatory networks in different contexts recover contrasting spatial cell patterns that resemble those in Arabidopsis root and leaf epidermis: a dynamic model. Int J Dev Biol 51:139–155. https://doi.org/10.1387/ijdb.062183mb

    Article  CAS  PubMed  Google Scholar 

  28. Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K et al (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:1166–1177. https://doi.org/10.1371/journal.pbio.0060141

    Article  CAS  Google Scholar 

  29. Merks RMH, Van de Peer Y, Inzé D, Beemster GTS (2007) Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 12:384–390. https://doi.org/10.1016/j.tplants.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  30. Jönsson H, Heisler M, Shapiro B, Meyerowitz E, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638. https://doi.org/10.1073/pnas.0509839103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103:1301–1306. https://doi.org/10.1073/pnas.0510457103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palm MM, Merks RMH (2014) Large-scale parameter studies of cell-based models of tissue morphogenesis using compucell3D or virtualLeaf. Methods Mol Biol 1189:301–322. https://doi.org/10.1007/978-1-4939-1164-6_20

    Article  Google Scholar 

  33. Fall CP, Wagner JM, Marland ES, Tyson JJ (2002) Computational cell biology. In: Series interdisciplinary applied mathematics. Springer, New York, NY

    Google Scholar 

  34. Ellner SP, Guckenheimer J (2006) Dynamic models in biology. Princeton University Press, Princeton, NJ, USA

    Book  Google Scholar 

Download references

Acknowledgments

We thank Robbert Geerts from the VU Amsterdam and Rosalie Althuis of Leiden University for their useful feedback on difficulties encountered throughout the usage of VirtualLeaf for their master’s thesis and bachelor’s thesis projects. This work was funded by the Leiden/Huygens Fellowship (C.-C. A.), the Leiden University Fund under grant number W213078-1 (G.Y.P), and the Netherlands Organization for Scientific Research (NWO-ENW) within the Innovational Research Incentives Scheme (R. M. H. M.; Vici 2017, No. 865.17.004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roeland M. H. Merks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Antonovici, CC., Peerdeman, G.Y., Wolff, H.B., Merks, R.M.H. (2022). Modeling Plant Tissue Development Using VirtualLeaf. In: Lucas, M. (eds) Plant Systems Biology. Methods in Molecular Biology, vol 2395. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1816-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1816-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1814-1

  • Online ISBN: 978-1-0716-1816-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics