Skip to main content

Methods for Studying Mouse and Human Invariant Natural Killer T Cells

  • Protocol
  • First Online:
Invariant Natural Killer T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2388))

Abstract

Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that recognize lipid antigens presented by nonpolymorphic major histocompatibility complex (MHC) I-like molecule CD1d. iNKT cells play essential roles in regulating immune responses against cancer, viral infection, autoimmune disease, and allergy. However, the study and application of iNKT cells have been hampered by their very small numbers (0.01–1% in mouse and human blood). Here, we describe protocols to (1) generate mouse iNKT cells from mouse mononuclear cells or from mouse hematopoietic stem cells engineered with iNKT T cell receptor (TCR) gene (denoted as mMNC-iNKT cells or mHSC-iNKT cells, respectively), (2) generate human iNKT cells from human peripheral blood mononuclear cells or from human HSC cells engineered with iNKT TCR gene (denoted as hPBMC-iNKT cells or hHSC-iNKT cells, respectively), and (3) characterize mouse and human iNKT cells in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336. https://doi.org/10.1146/annurev.immunol.25.022106.141711

    Article  CAS  PubMed  Google Scholar 

  2. Bennstein SB (2017) Unraveling natural killer T-cells development. Front Immunol 8:1950. https://doi.org/10.3389/fimmu.2017.01950

    Article  CAS  PubMed  Google Scholar 

  3. Mori L, Lepore M, De Libero G (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34:479–510. https://doi.org/10.1146/annurev-immunol-032414-112008

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11(3):197–206. https://doi.org/10.1038/ni.1841

    Article  CAS  PubMed  Google Scholar 

  5. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7(7):505–518. https://doi.org/10.1038/nri2116

    Article  CAS  PubMed  Google Scholar 

  6. Fujii SI, Shimizu K (2019) Immune networks and therapeutic targeting of iNKT cells in cancer. Trends Immunol 40(11):984–997. https://doi.org/10.1016/j.it.2019.09.008

    Article  CAS  PubMed  Google Scholar 

  7. Nagato K, Motohashi S, Ishibashi F, Okita K, Yamasaki K, Moriya Y, Hoshino H, Yoshida S, Hanaoka H, Fujii S, Taniguchi M, Yoshino I, Nakayama T (2012) Accumulation of activated invariant natural killer T cells in the tumor microenvironment after alpha-galactosylceramide-pulsed antigen presenting cells. J Clin Immunol 32(5):1071–1081. https://doi.org/10.1007/s10875-012-9697-9

    Article  CAS  PubMed  Google Scholar 

  8. Exley MA, Friedlander P, Alatrakchi N, Vriend L, Yue S, Sasada T, Zeng W, Mizukami Y, Clark J, Nemer D, LeClair K, Canning C, Daley H, Dranoff G, Giobbie-Hurder A, Hodi FS, Ritz J, Balk SP (2017) Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase I clinical trial. Clin Cancer Res 23(14):3510–3519. https://doi.org/10.1158/1078-0432.CCR-16-0600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takami M, Ihara F, Motohashi S (2018) Clinical application of iNKT cell-mediated anti-tumor activity against lung cancer and head and neck cancer. Front Immunol 9:2021. https://doi.org/10.3389/fimmu.2018.02021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bedard M, Salio M, Cerundolo V (2017) Harnessing the power of invariant natural killer T cells in cancer immunotherapy. Front Immunol 8:1829. https://doi.org/10.3389/fimmu.2017.01829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Torina A, Guggino G, La Manna MP, Sireci G (2018) The Janus face of NKT cell function in autoimmunity and infectious diseases. Int J Mol Sci 19(2):440. https://doi.org/10.3390/ijms19020440

    Article  CAS  PubMed Central  Google Scholar 

  12. Lundblad LKA, Gulec N, Poynter ME, DeVault VL, Dienz O, Boyson JE, Daphtary N, Aliyeva M, Ather JL, Scheuplein F, Schaub R (2017) The role of iNKT cells on the phenotypes of allergic airways in a mouse model. Pulm Pharmacol Ther 45:80–89. https://doi.org/10.1016/j.pupt.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nair S, Dhodapkar MV (2017) Natural killer T cells in cancer immunotherapy. Front Immunol 8:1178. https://doi.org/10.3389/fimmu.2017.01178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM, Paganoni AM, Maccario R, Di Cesare-Merlone A, Zecca M, Locatelli F, Dellabona P, Casorati G (2011) Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state. J Immunol 186(7):4490–4499. https://doi.org/10.4049/jimmunol.1003748

    Article  CAS  PubMed  Google Scholar 

  15. Smith DJ, Liu S, Ji S, Li B, McLaughlin J, Cheng D, Witte ON, Yang L (2015) Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc Natl Acad Sci U S A 112(5):1523–1528. https://doi.org/10.1073/pnas.1424877112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith DJ, Lin LJ, Moon H, Pham AT, Wang X, Liu S, Ji S, Rezek V, Shimizu S, Ruiz M, Lam J, Janzen DM, Memarzadeh S, Kohn DB, Zack JA, Kitchen SG, An DS, Yang L (2016) Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cells Dev 25(24):1863–1873. https://doi.org/10.1089/scd.2016.0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Y, Smith DJ, Zhou Y, Li YR, Yu J, Lee D, Wang YC, Di Biase S, Wang X, Hardoy C, Ku J, Tsao T, Lin LJ, Pham AT, Moon H, McLaughlin J, Cheng D, Hollis RP, Campo-Fernandez B, Urbinati F, Wei L, Pang L, Rezek V, Berent-Maoz B, Macabali MH, Gjertson D, Wang X, Galic Z, Kitchen SG, An DS, Hu-Lieskovan S, Kaplan-Lefko PJ, De Oliveira SN, Seet CS, Larson SM, Forman SJ, Heath JR, Zack JA, Crooks GM, Radu CG, Ribas A, Kohn DB, Witte ON, Yang L (2019) Development of hematopoietic stem cell-engineered invariant natural killer T cell therapy for cancer. Cell Stem Cell 25(4):542–557. e549. https://doi.org/10.1016/j.stem.2019.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watarai H, Nakagawa R, Omori-Miyake M, Dashtsoodol N, Taniguchi M (2008) Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat Protoc 3(1):70–78. https://doi.org/10.1038/nprot.2007.515

    Article  CAS  PubMed  Google Scholar 

  19. Masiuk KE, Zhang R, Osborne K, Hollis RP, Campo-Fernandez B, Kohn DB (2019) PGE2 and Poloxamer Synperonic F108 enhance transduction of human HSPCs with a beta-globin lentiviral vector. Mol Ther Methods Clin Dev 13:390–398. https://doi.org/10.1016/j.omtm.2019.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the University of California, Los Angeles (UCLA) animal facility for providing animal support and the UCLA Virology Core for providing human blood from healthy donors. This work was supported by a Director’s New Innovator Award from the NIH (DP2 CA196335, to L.Y.), a Partnering Opportunity for Translational Research Projects Award from the California Institute for Regenerative Medicine (CIRM TRAN1-08533, to L.Y.), a Stem Cell Research Award from the Concern Foundation (to L.Y.), a Research Career Development Award from the STOP CANCER Foundation (to L.Y.), and a BSCRC-RHF Research Award from the Rose Hills Research Foundation (to L.Y.). Y.-R.L. is a predoctoral fellow supported by the UCLA Whitcome Predoctoral Fellowship in Molecular Biology. We acknowledge Tasha Tsao and Emily Peng for proofreading the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, Y., Li, YR., Zeng, S., Yang, L. (2021). Methods for Studying Mouse and Human Invariant Natural Killer T Cells. In: Liu, C. (eds) Invariant Natural Killer T-Cells. Methods in Molecular Biology, vol 2388. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1775-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1775-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1774-8

  • Online ISBN: 978-1-0716-1775-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics