Skip to main content

Beyond the Michaelis–Menten: Bayesian Inference for Enzyme Kinetic Analysis

  • Protocol
  • First Online:
Computational Methods for Estimating the Kinetic Parameters of Biological Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2385))

Abstract

Although the Michaelis–Menten (MM) rate law has been widely used to estimate enzyme kinetic parameters, it works only under the condition of extremely low enzyme concentration. Furthermore, even when this condition is satisfied, parameter estimation is often imprecise due to the parameter identifiability issue. To overcome these limitations of the canonical approach to enzyme kinetics, we developed a Bayesian approach based on a modified form of the MM rate law, which is derived with the total quasi-steady state approximation. Here, we illustrate how to perform the Bayesian inference for the progress curve assay with our user-friendly computational R package. We also describe an optimal experimental design for the progress curve assay, with which enzyme kinetic parameters can be accurately and precisely estimated from minimal measurements of the progress curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henri V (1903) Lois générales de l’action des diastases. Librairie Scientifique A, Hermann

    Google Scholar 

  2. Menten L, Michaelis M (1913) Die kinetik der invertinwirkung. Biochem Z 49(333–369):5

    Google Scholar 

  3. Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19(2):338

    Article  CAS  Google Scholar 

  4. Gunawardena J (2014) Time-scale separation–Michaelis and Menten’s old idea, still bearing fruit. FEBS J 281(2):473–488

    Article  CAS  Google Scholar 

  5. Schnell S, Maini P (2003) A century of enzyme kinetics: reliability of the KM and vmax estimates. Comment Theor Biol 8:169–187

    Article  Google Scholar 

  6. Choi B, Rempala GA, Kim JK (2017) Beyond the Michaelis-Menten equation: accurate and efficient estimation of enzyme kinetic parameters. Sci Rep 7(1):1–11

    Article  Google Scholar 

  7. Segel LA, Slemrod M (1989) The Quasi-Steady-state assumption: a case study in perturbation. SIAM Rev 31(3):446–477

    Article  Google Scholar 

  8. Kim JK, Tyson JJ (2020) Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy. PLoS Comput Biol 16(10):e1008258

    Article  CAS  Google Scholar 

  9. Algar WR, Malanoski AP, Susumu K, Stewart MH, Hildebrandt N, Medintz IL (2012) Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Forster resonance energy transfer relay. Anal Chem 84(22):10136–10146

    Article  CAS  Google Scholar 

  10. Sapsford KE, Farrell D, Sun S, Rasooly A, Mattoussi H, Medintz IL (2009) Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates. Sensors Actuators B Chem 139(1):13–21

    Article  CAS  Google Scholar 

  11. Algar WR, Malonoski A, Deschamps JR, Blanco-Canosa JB, Susumu K, Stewart MH, Johnson BJ, Dawson PE, Medintz IL (2012) Proteolytic activity at quantum dot-conjugates: Kinetic analysis reveals enhanced enzyme activity and localized interfacial “hopping”. Nano Lett 12(7):3793–3802

    Article  CAS  Google Scholar 

  12. Albe KR, Butler MH, Wright BE (1990) Cellular concentrations of enzymes and their substrates. J Theor Biol 143(2):163–195

    Article  CAS  Google Scholar 

  13. Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M (2006) Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J Biol Chem 281(13):8917–8926

    Article  CAS  Google Scholar 

  14. Blüthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, Kholodenko BN (2006) Effects of sequestration on signal transduction cascades. FEBS J 273(5):895–906

    Article  Google Scholar 

  15. Houston JB, Kenworthy KE (2000) In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos 28(3):246–254

    CAS  PubMed  Google Scholar 

  16. Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4(10):825

    Article  CAS  Google Scholar 

  17. H-M B, H-Y Y, Kim SK, Kim JK (2020) Beyond the Michaelis-Menten: accurate prediction of in vivo hepatic clearance for drugs with low KM. Clin Transl Sci 13:1–9

    Article  Google Scholar 

  18. Cha S (1970) Kinetic behavior at high enzyme concentrations magnitude of errors of Michaelis-Menten and other approximations. J Biol Chem 245(18):4814–4818

    Article  CAS  Google Scholar 

  19. Laidler KJ (1955) Theory of the transient phase in kinetics, with special reference to enzyme systems. Can J Chem 33(10):1614–1624

    Article  CAS  Google Scholar 

  20. Tzafriri AR (2003) Michaelis-Menten kinetics at high enzyme concentrations. Bull Math Biol 65(6):1111–1129

    Article  CAS  Google Scholar 

  21. Borghans JA, De Boer RJ, Segel LA (1996) Extending the quasi-steady state approximation by changing variables. Bull Math Biol 58(1):43–63

    Article  CAS  Google Scholar 

  22. Schnell S, Maini PK (2002) Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math Comput Model 35(1–2):137–144

    Article  Google Scholar 

  23. Bersani AM, Bersani E, Dell’Acqua G, Pedersen MG (2015) New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper. Contin Mech Thermodyn 27(4–5):659–684

    Article  Google Scholar 

  24. Tzafriri AR, Edelman ER (2007) Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis–Menten constant. J Theor Biol 245(4):737–748

    Article  CAS  Google Scholar 

  25. Lim HC (1973) On kinetic behavior at high enzyme concentrations. AICHE J 19(3):659–661

    Article  CAS  Google Scholar 

  26. Choi B, Kim JK, Rempala GA (2020) EKMCMC: MCMC procedures for estimating enzyme kinetics constants. R Package version 1.1.0

    Google Scholar 

  27. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  28. RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/

  29. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. Chapman & Hall/CRC texts in statistical science. CRC Press, Boca Raton

    Google Scholar 

  30. Roy V (2020) Convergence diagnostics for Markov chain Monte Carlo. Annu Rev Stat Appl 7(1):387–412

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Global Ph. D. Fellowship Program 2019H1A2A1075303 (H.H.), (NRF-2017R1D1A3B03031008 (B.C.), NRF-2020R1F1A1A01066082 (B.C.), National Research Foundation of Korea grants NRF-2016 RICIB 3008468 (J.K.K.), the Institute for Basic Science IBS-R029-C3 (J.K.K.), and the TJ Park Science Fellowship of the POSCO TJ Park Foundation (J.K.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hong, H., Choi, B., Kim, J.K. (2022). Beyond the Michaelis–Menten: Bayesian Inference for Enzyme Kinetic Analysis. In: Vanhaelen, Q. (eds) Computational Methods for Estimating the Kinetic Parameters of Biological Systems. Methods in Molecular Biology, vol 2385. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1767-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1767-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1766-3

  • Online ISBN: 978-1-0716-1767-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics