Skip to main content

Identification of Drug Resistance Genes Using a Pooled Lentiviral CRISPR/Cas9 Screening Approach

  • Protocol
  • First Online:
Mapping Genetic Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2381))

Abstract

In addition to advancing the development of gene-editing therapeutics, CRISPR/Cas9 is transforming how functional genetic studies are carried out in the lab. By increasing the ease with which genetic information can be inserted, deleted, or edited in cell and organism models, it facilitates genotype–phenotype analysis. Moreover, CRISPR/Cas9 has revolutionized the speed at which new genes underlying a particular phenotype can be identified through its application in genomic screens. Arrayed high-throughput and pooled lentiviral-based CRISPR/Cas9 screens have now been used in a wide variety of contexts, including the identification of essential genes, genes involved in cancer metastasis and tumor growth, and even genes involved in viral response. This technology has also been successfully used to identify drug targets and drug resistance mechanisms. Here, we provide a detailed protocol for performing a genome-wide pooled lentiviral CRISPR/Cas9 knockout screen to identify genetic modulators of a small-molecule drug. While we exemplify how to identify genes involved in resistance to a cytotoxic histone deacetylase inhibitor, Trichostatin A (TSA), the workflow we present can easily be adapted to different types of selections and other types of exogenous ligands or drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  Google Scholar 

  2. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  3. Jiang F, Zhou K, Ma L et al (2015) STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477–1481

    Article  CAS  Google Scholar 

  4. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  Google Scholar 

  5. Grajcarek J, Monlong J, Nishinaka-Arai Y et al (2019) Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations. Nat Commun 10:4856

    Article  Google Scholar 

  6. Ablain J, Zon LI (2016) Tissue-specific gene targeting using CRISPR/Cas9. Methods Cell Biol 135:189–202

    Article  CAS  Google Scholar 

  7. Jamal M, Khan FA, Da L et al (2016) Keeping CRISPR/Cas on-target. Curr Issues Mol Biol 20:1–12

    PubMed  Google Scholar 

  8. Komor AC, Badran AH, Liu DR (2018) Editing the genome without double-stranded DNA breaks. ACS Chem Biol 13:383–388

    Article  CAS  Google Scholar 

  9. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  Google Scholar 

  10. Hirakawa MP, Krishnakumar R, Timlin JA et al (2020) Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep:40

    Google Scholar 

  11. Cromwell CR, Jovel J, Hubbard BP (2021) Methods for measuring CRISPR/Cas9 DNA cleavage in cells. Methods Mol Biol 2162:197–213

    Article  CAS  Google Scholar 

  12. Cromwell CR, Hubbard BP (2021) In vitro assays for comparing the specificity of first- and next-generation CRISPR/Cas9 systems. Methods Mol Biol 2162:215–232

    Article  CAS  Google Scholar 

  13. Maggio I, Zittersteijn HA, Wang Q et al (2020) Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther 27:209–225

    Article  CAS  Google Scholar 

  14. Cromwell CR, Sung K, Park J et al (2018) Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 9:1448

    Article  Google Scholar 

  15. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  Google Scholar 

  16. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  Google Scholar 

  17. Sanson KR, Hanna RE, Hegde M et al (2018) Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun 9:5416

    Article  CAS  Google Scholar 

  18. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    Article  CAS  Google Scholar 

  19. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588

    Article  CAS  Google Scholar 

  20. Cross BC, Lawo S, Archer CR et al (2016) Increasing the performance of pooled CRISPR-Cas9 drop-out screening. Sci Rep 6:31782

    Article  CAS  Google Scholar 

  21. Chen S, Sanjana NE, Zheng K et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246–1260

    Article  CAS  Google Scholar 

  22. Li B, Clohisey SM, Chia BS et al (2020) Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nat Commun 11:164

    Article  CAS  Google Scholar 

  23. Yang J, Rajan SS, Friedrich MJ et al (2019) Genome-scale CRISPRa screen identifies novel factors for cellular reprogramming. Stem Cell Rep 12:757–771

    Article  CAS  Google Scholar 

  24. Shi J, Wang E, Milazzo JP et al (2015) Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33:661–667

    Article  CAS  Google Scholar 

  25. Reczek CR, Birsoy K, Kong H et al (2017) A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol 13:1274–1279

    Article  CAS  Google Scholar 

  26. Fang P, De Souza C, Minn K et al (2019) Genome-scale CRISPR knockout screen identifies TIGAR as a modifier of PARP inhibitor sensitivity. Commun Biol 2:335

    Article  Google Scholar 

  27. Zhang R, Miner JJ, Gorman MJ et al (2016) A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164–168

    Article  CAS  Google Scholar 

  28. Ruiz S, Mayor-Ruiz C, Lafarga V et al (2016) A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol Cell 62:307–313

    Article  CAS  Google Scholar 

  29. Kurata M, Rathe SK, Bailey NJ et al (2016) Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Sci Rep 6:36199

    Article  CAS  Google Scholar 

  30. Han K, Jeng EE, Hess GT et al (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 35:463–474

    Article  CAS  Google Scholar 

  31. Wang C, Jin H, Gao D et al (2018) Phospho-ERK is a biomarker of response to a synthetic lethal drug combination of sorafenib and MEK inhibition in liver cancer. J Hepatol 69:1057–1065

    Article  CAS  Google Scholar 

  32. Shen Z, Liao X, Shao Z et al (2019) Short-term stimulation with histone deacetylase inhibitor trichostatin a induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells without increasing cell invasion ability. BMC Cancer 19:262

    Article  Google Scholar 

  33. Kerek EM, Yoon KH, Luo SY et al (2020) A conserved acetylation switch enables pharmacological control of tubby-like protein stability. J Biol Chem 296:100073

    Article  Google Scholar 

  34. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    Article  CAS  Google Scholar 

  35. Joung J, Konermann S, Gootenberg JS et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12:828–863

    Article  CAS  Google Scholar 

  36. Malina A, Katigbak A, Cencic R et al (2014) Adapting CRISPR/Cas9 for functional genomics screens. Methods Enzymol 546:193–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery/Discovery Accelerator Supplement (RGPIN-2016-0638) and CIHR (PS-408552) grants to BPH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil P. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kerek, E.M., Cromwell, C.R., Hubbard, B.P. (2021). Identification of Drug Resistance Genes Using a Pooled Lentiviral CRISPR/Cas9 Screening Approach. In: Vizeacoumar, F.J., Freywald, A. (eds) Mapping Genetic Interactions. Methods in Molecular Biology, vol 2381. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1740-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1740-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1739-7

  • Online ISBN: 978-1-0716-1740-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics