Skip to main content

Imaging of the Cytoskeleton Using Live and Fixed Drosophila Tissue Culture Cells

  • Protocol
  • First Online:
Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2364))

Abstract

In recent years, the convergence of multiple technologies and experimental approaches has led to the expanded use of cultured Drosophila cells as a model system. Their ease of culture and maintenance, susceptibility to RNA interference, and imaging characteristics have led to extensive use in both traditional experimental approaches and high-throughput RNAi screens. Here we describe Drosophila S2 cell culture and preparation for live-cell and fixed-cell fluorescence microscopy and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    CAS  PubMed  Google Scholar 

  2. Somma MP, Fasulo B, Cenc G, Cundari E, Gatti M (2002) Molecular dissection of cytokinesis by RNAi interference in drosophila tissue culture cells. Mol Biol Cell 13:2448–2460

    Article  CAS  Google Scholar 

  3. Pearson AM, Baksa K, Rämet M, Protas M, McKee M, Brown D, Ezekowitz RA (2003) Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in drosophila. Microbes Infect 10:815–824

    Article  Google Scholar 

  4. Kiger AA, Baum B, Jones S, Jones MR, Coulson A, Echeverri C, Perrimon N (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2:27

    Article  CAS  Google Scholar 

  5. Rogers SL, Wiedemann U, Stuurman N, Vale RD (2003) Molecular requirements for actin-based lamella formation in drosophila S2 cells. J Cell Biol 162:1079–1088

    Article  CAS  Google Scholar 

  6. Eggert US, Kiger AA, Richter C, Perlman ZE, Perrimon N, Mitchison TJ, Field CM (2004) Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol 12:e379

    Article  Google Scholar 

  7. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in drosophila S2 cells. Science 316:417–421

    Article  CAS  Google Scholar 

  8. D'Ambrosio MV, Vale RD (2010) A whole genome RNAi screen of drosophila S2 cell spreading performed using automated computational image analysis. J Cell Biol 191:471–479

    Article  CAS  Google Scholar 

  9. Moutinho-Pereira S, Stuurman N, Afonso O, Hornsveld M, Aguiar P, Goshima G, Vale RD, Maiato H (2013) Genes involved in centrosome-independent mitotic spindle assembly in drosophila S2 cells. Proc Natl Acad Sci U S A 110:19808–19813

    Article  CAS  Google Scholar 

  10. Toret CP, D'Ambrosio MV, Vale RD, Simon MA, Nelson WJ (2014) A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell-cell adhesion. J Cell Biol 201:265–279

    Article  Google Scholar 

  11. Caplen NJ, Fleenor J, Fire A, Morgan RA (2000) dsRNA-mediated gene silencing in cultured drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252:95–105

    Article  CAS  Google Scholar 

  12. Rogers SL, Rogers GC (2008) Culture of drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nat Protoc 3:606–611

    Article  CAS  Google Scholar 

  13. Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  Google Scholar 

  14. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  CAS  Google Scholar 

  15. Beir E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 39:715–720

    Google Scholar 

  16. Rogers SL, Rogers GC, Sharp DJ, Vale RD (2002) Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158:873–884

    Article  CAS  Google Scholar 

  17. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–342

    Article  CAS  Google Scholar 

  18. Iwasa JH, Mullins RD (2007) Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol 17:395–406

    Article  CAS  Google Scholar 

  19. Uehara R, Goshima G, Mabuchi I, Vale RD, Spudich JA, Griffis ER (2010) Determinants of myosin II cortical localization during cytokinesis. Curr Biol 20:1080–1085

    Article  CAS  Google Scholar 

  20. Biyasheva A, Svitkina T, Kunda P, Baum B, Borisy G (2004) Cascade pathway of filopodia formation downstream of SCAR. J Cell Sci 117:837–884

    Article  CAS  Google Scholar 

  21. Kim JH, Cho A, Yin H, Schafer DA, Mouneimne G, Simpson KJ, Nguyen KV, Brugge JS, Montell DJ (2011) Psidin, a conserved protein that regulates protrusion dynamics and cell migration. Genens Dev 25:730–741

    Article  CAS  Google Scholar 

  22. Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ (2011) Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 9:54

    Article  CAS  Google Scholar 

  23. Maiat H, Sampaio P, Lemos CL, Findlay J, Carmena M, Earnshaw WC, Sunkel CE (2002) MAST/orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol 157:749–760

    Article  Google Scholar 

  24. Logarinho E, Bousbaa H, Dias JM, Lopes C, Amorim I, Antunes-Martins A, Sunkel CE (2004) Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in drosophila cells. J Cell Sci 117:1757–1771

    Article  CAS  Google Scholar 

  25. Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contribute to spindle assembly during animal mitosis. J Cell Biol 167:831–840

    Article  CAS  Google Scholar 

  26. Goshima G, Nédélec F, Vale RD (2005) Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 171:229–240

    Article  CAS  Google Scholar 

  27. Maiato H, Hergert PJ, Moutinho-Pereira S, Dong Y, Vandenbeldt KJ, Rieder CL, McEwe BF (2006) The ultrastructure of the kinetochore and kinetochore fiber in drosophila somatic cells. Chromosoma 115:469–480

    Article  CAS  Google Scholar 

  28. Griffis ER, Stuurman N, Vale RD (2007) Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J Cell Biol 117:1005–1015

    Article  Google Scholar 

  29. Zhang D, Rogers GC, Buster DW, Sharp DJ (2007) Three microtubule severing enzymes contribute to the "Pacman-flux" machinery that moves chromosomes. J Cell Biol 177:231–242

    Article  CAS  Google Scholar 

  30. Maresca TJ, Salmon ED (2009) Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 184:373–381

    Article  CAS  Google Scholar 

  31. Rogers GC, Rusan NM, Peifer M, Rogers SL (2008) A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase drosophila cells. Mol Biol Cell 19:3163–3178

    Article  CAS  Google Scholar 

  32. Rogers SL, Wiedemann U, Häcker U, Turck C, Vale RD (2004) Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr Biol 14:1827–1833

    Article  CAS  Google Scholar 

  33. Mennella V, Rogers GC, Rogers SL, Buster DW, Vale RD, Sharp DJ (2005) Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat Cell Biol 7:235–245

    Article  CAS  Google Scholar 

  34. Goodwin SS, Vale RD (2010) Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143:263–274

    Article  CAS  Google Scholar 

  35. Rothenberg ME, Rogers SL, Vale RD, Jan LY, Jan YN (2003) Drosophila pod-1 crosslinks both actin and microtubules and controls the targeting of axons. Neuron 39:779–791

    Article  CAS  Google Scholar 

  36. Applewhite DA, Grode KD, Keller D, Zadeh AD, Slep KC, Rogers SL (2010) The spectraplakin short stop is an actin-microtubule cross-linker that contributes to organization of the microtubule network. Mol Biol Cell 21:1714–1724

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. Quintero-Carmona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Applewhite, D.A., Lacy, C.A., Griffis, E.R., Quintero-Carmona, O.A. (2022). Imaging of the Cytoskeleton Using Live and Fixed Drosophila Tissue Culture Cells. In: Gavin, R.H. (eds) Cytoskeleton . Methods in Molecular Biology, vol 2364. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1661-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1661-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1660-4

  • Online ISBN: 978-1-0716-1661-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics