Skip to main content

Features Selection and Extraction in Statistical Analysis of Proteomics Datasets

  • Protocol
  • First Online:
Proteomics Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2361))

Abstract

“Omics” techniques (e.g., proteomics, genomics, metabolomics), from which huge datasets can nowadays be obtained, require a different way of thinking about data analysis that can be summarized with the idea that, when data are enough, they can speak for themselves. Indeed, managing huge amounts of data imposes the replacement of the classical deductive approach (hypothesis-driven) with a data-driven hypothesis-generating inductive approach, so to generate mechanistical hypotheses from data.

Data reduction is a crucial step in proteomics data analysis, because of the sparsity of significant features in big datasets. Thus, feature selection/extraction methods are applied to obtain a set of features based on which a proteomics signature can be drawn, with a functional significance (e.g., classification, diagnosis, prognosis). Despite big data generated almost daily by proteomics studies, a well-established statistical workflow for data analysis in proteomics is still lacking, opening up to misleading and incorrect data analysis and interpretation. This chapter will give an overview of the methods available for feature selection/extraction in proteomics datasets and how to choose the most appropriate one based on the type of dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ma’ayan A (2017) Complex systems biology. J R Soc Interface 14(134):20170391

    Article  PubMed  PubMed Central  Google Scholar 

  2. Broad CD (1925) Mind and its place in nature. Harcourt, Brace & Company, Inc., New York

    Google Scholar 

  3. Hayes BK, Heit E, Swendsen H (2010) Inductive reasoning. Wiley Interdiscip Rev Cogn Sci 1:278–292

    Article  PubMed  Google Scholar 

  4. Hayes BK, Heit E (2018) Inductive reasoning 2.0. Wiley Interdiscip Rev Cogn Sci 9:e1459

    Article  PubMed  Google Scholar 

  5. He Q-Y, Chiu J-F (2003) Proteomics in biomarker discovery and drug development. J Cell Biochem 89:868–886

    Article  CAS  PubMed  Google Scholar 

  6. Kohn EC, Azad N, Annunziata C et al (2007) Proteomics as a tool for biomarker discovery. Dis Markers 23:411–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suppers A, van Gool AJ, Wessels HJCT (2018) Integrated chemometrics and statistics to drive successful proteomics biomarker discovery. Proteomes 6(2):20

    Article  PubMed Central  Google Scholar 

  8. Bittner L (1962) R. Bellman, adaptive control processes. A guided tour. XVI + 255 S. Princeton, N. J., 1961. Princeton University Press. Preis geb. $ 6.50. ZAMM J Appl Math Mech Z Für Angew Math Mech 42:364–365

    Article  Google Scholar 

  9. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  10. Hira ZM, Gillies DF A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinforma 2015:198363. https://www.hindawi.com/journals/abi/2015/198363/

  11. Hoque N, Bhattacharyya DK, Kalita JK (2014) MIFS-ND: a mutual information-based feature selection method. Expert Syst Appl 41:6371–6385

    Article  Google Scholar 

  12. Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings, twentieth international conference on machine learning, pp 856–863

    Google Scholar 

  13. Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53:23–69

    Article  Google Scholar 

  14. Radovic M, Ghalwash M, Filipovic N et al (2017) Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics 18:9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Azuaje F (2006) Witten IH, Frank E: data mining: practical machine learning tools and techniques 2nd edition. Biomed Eng Online 5:51

    Article  PubMed Central  Google Scholar 

  16. Alelyani S, Tang J, Liu H (2013) Feature selection for clustering: a review. In: Data clustering: algorithms and applications

    Google Scholar 

  17. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324

    Article  Google Scholar 

  18. Jović A, Brkić K, Bogunović N (2015) A review of feature selection methods with applications. In: 2015 38th International convention on information and communication technology, electronics and microelectronics (MIPRO), pp 1200–1205

    Google Scholar 

  19. Bonferroni C (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni R Ist Super Sci Econ E Commericiali Firenze 8:3–62

    Google Scholar 

  20. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  21. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  22. Aggarwal S, Yadav AK (2016) False discovery rate estimation in proteomics. Methods Mol Biol 1362:119–128

    Article  CAS  PubMed  Google Scholar 

  23. Diz AP, Carvajal-Rodríguez A, Skibinski DOF (2011) Multiple hypothesis testing in proteomics: a strategy for experimental work. Mol Cell Proteomics 10

    Google Scholar 

  24. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  25. Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemom 28:213–225

    Article  CAS  Google Scholar 

  26. Gromski PS, Muhamadali H, Ellis DI et al (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis—a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23

    Article  CAS  PubMed  Google Scholar 

  27. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  28. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Transact A Math Phys Eng Sci 374

    Google Scholar 

  29. Dubitzky W, Granzow M, Berrar DP (2007) Fundamentals of data mining in genomics and proteomics. Springer, Berlin

    Book  Google Scholar 

  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  31. Kuligowski J, Pérez-Guaita D, Quintás G (2016) Application of discriminant analysis and cross-validation on proteomics data. Methods Mol Biol 1362:175–184

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Sue AC-H, Goh WWB (2017) Feature selection in clinical proteomics: with great power comes great reproducibility. Drug Discov Today 22:912–918

    Article  CAS  PubMed  Google Scholar 

  33. Goh WWB, Wong L (2016) Evaluating feature-selection stability in next-generation proteomics. J Bioinforma Comput Biol 14:1650029

    Article  CAS  Google Scholar 

  34. Lim K, Wong L (2014) Finding consistent disease subnetworks using PFSNet. Bioinformatics 30:189–196

    Article  CAS  PubMed  Google Scholar 

  35. Goh WWB, Wong L (2016) Advancing clinical proteomics via analysis based on biological complexes: a tale of five paradigms. J Proteome Res 15:3167–3179

    Article  CAS  PubMed  Google Scholar 

  36. Goh WWB (2016) Fuzzy-FishNET: a highly reproducible protein complex-based approach for feature selection in comparative proteomics. BMC Med Genet 9:67

    Google Scholar 

  37. Christin C, Hoefsloot HCJ, Smilde AK et al (2013) A critical assessment of feature selection methods for biomarker discovery in clinical proteomics. Mol Cell Proteomics 12:263–276

    Article  PubMed  Google Scholar 

  38. Alterovitz G, Liu J, Afkhami E et al (2007) Bayesian methods for proteomics. Proteomics 7:2843–2855

    Article  CAS  PubMed  Google Scholar 

  39. Hernández B, Pennington SR, Parnell AC (2015) Bayesian methods for proteomic biomarker development. EuPA Open Proteom 9:54–64

    Article  Google Scholar 

  40. Dridi N, Giremus A, Giovannelli J-F et al (2017) Bayesian inference for biomarker discovery in proteomics: an analytic solution. EURASIP J Bioinforma Syst Biol 2017:9

    Article  Google Scholar 

  41. Marchiori E, Heegaard NHH, West-Nielsen M et al (2005) Feature selection for classification with proteomic data of mixed quality. In: 2005 IEEE symposium on computational intelligence in bioinformatics and computational biology, pp 1–7

    Google Scholar 

  42. Guyon I, Weston J, Barnhill S et al (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  43. Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the tenth national conference on artificial intelligence. AAAI Press, San Jose, CA, pp 129–134

    Google Scholar 

  44. Conrad TOF, Genzel M, Cvetkovic N et al (2017) Sparse proteomics analysis—a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data. BMC Bioinformatics 18:160

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lualdi M, Fasano M (2019) Statistical analysis of proteomics data: a review on feature selection. J Proteome 198:18–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Fasano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lualdi, M., Fasano, M. (2021). Features Selection and Extraction in Statistical Analysis of Proteomics Datasets. In: Cecconi, D. (eds) Proteomics Data Analysis. Methods in Molecular Biology, vol 2361. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1641-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1641-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1640-6

  • Online ISBN: 978-1-0716-1641-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics