Skip to main content

Method for Multiplexed Dynamic Intravital Multiphoton Imaging

  • Protocol
  • First Online:
Multiplexed Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2350))

Abstract

Intravital two-photon microscopy enables monitoring of cellular dynamics and communication of complex systems, in genuine environment—the living organism. Particularly, its application in understanding the immune system brought unique insights into pathophysiologic processes in vivo. Here we present a method to achieve multiplexed dynamic intravital two-photon imaging by using a synergistic strategy combining a spectrally broad range of fluorophore emissions, a wave-mixing concept for simultaneous excitation of all targeted fluorophores, and an effective unmixing algorithm based on the calculation of spectral similarities with previously acquired fluorophore fingerprints. Our unmixing algorithm allows us to distinguish 7 fluorophore signals corresponding to various cellular and tissue compartments by using only four detector channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang JY, van Panhuys N, Kastenmuller W, Germain RN (2013) The future of immunoimaging - deeper, bigger, more precise, and definitively more colorful. Eur J Immunol 43:1407–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schubert W, Bonnenkoh B, Pommer AJ et al (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24(10):1270–1278. https://doi.org/10.1038/nbt1250

    Article  CAS  PubMed  Google Scholar 

  3. Holzwarth K, Köhler R, Philipsen L et al (2018) Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections. Cytometry A 93(9):876–888. https://doi.org/10.1002/cyto.a.23526

    Article  CAS  PubMed  Google Scholar 

  4. Giesen C, Wang HA, Schapiro D et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11(4):417–422. https://doi.org/10.1038/nmeth.2869

    Article  CAS  PubMed  Google Scholar 

  5. Rakhymzhan A, Leben R, Zimmermann H et al (2017) Synergistic strategy for multicolor two-photon microscopy: application to the analysis of germinal center reactions in vivo. Sci Rep 7(1):7101. https://doi.org/10.1038/s41598-017-07165-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hauser AE, Junt T, Mempel TR et al (2007) Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26(5):655–667

    Article  CAS  PubMed  Google Scholar 

  7. Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10(8):751–754. https://doi.org/10.1038/nmeth.2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shcherbo D, Shemiakina II, Ryabova AV et al (2010) Near-infrared fluorescent proteins. Nat Methods 7(10):827–829. https://doi.org/10.1038/nmeth.1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Entenberg D, Wyckoff J, Glicorijevic B et al (2011) Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat Protoc 6:1500–1520. https://doi.org/10.1038/nprot.2011.376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ricard C, Debarbieux FC (2014) Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment. Front Cell Neurosci 8:57. https://doi.org/10.3389/fncel.2014.00057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herz J, Siffrin V, Hauser AE et al (2010) Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys J 98:715–723. https://doi.org/10.1016/j.bpj.2009.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahou P, Zimmerley M, Loulier K et al (2012) Multicolor two-photon tissue imaging by wavelength mixing. Nat Methods 9:815–818. https://doi.org/10.1038/nmeth.2098

    Article  CAS  PubMed  Google Scholar 

  13. Tu H, Boppart SA (2013) Coherent fiber supercontinuum for biophotonics. Laser Photon Rev 7(5):628–645. https://doi.org/10.1002/lpor.201200014

    Article  CAS  Google Scholar 

  14. Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol 95:245–265

    PubMed  Google Scholar 

  15. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144. https://doi.org/10.1016/j.cell.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  16. Seibler J, Zevnik B, Küter-Luks B et al (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res 31(4):e12

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ulbricht C, Lindquist RL, Tech L, Hauser AE (2017) Tracking plasma cell differentiation in living mice with two-photon microscopy. Methods Mol Biol 1623:37–50. https://doi.org/10.1007/978-1-4939-7095-7_3

    Article  CAS  PubMed  Google Scholar 

  18. Niesner R, Roth W, Gericke KH (2004) Photophysical aspects of single-molecule detection by two-photon excitation with consideration of pulsed illumination. ChemPhysChem 5(5):678–687

    Article  CAS  PubMed  Google Scholar 

  19. Niesner R, Gericke KH (2006) Quantitative determination of the single molecule detection regime in fluorescence fluctuation microscopy by means of photon counting histogram analysis. J Chem Phys 124(13):134704

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Robert Günther and Peggy Mex for excellent technical support. Financial support from the German Research Council (DFG) under grant TRR130 (C01 to R.N., C01, P17 to A.E.H. and P11, C03 to T.H.W.), FOR2165/2 (NI1167/4-2 to R.N. and HA5354/6-2 to A.E.H.), and HA5354/8-1 (SPP1937) to A.E.H. is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asylkhan Rakhymzhan or Raluca A. Niesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rakhymzhan, A., Acs, A., Leben, R., Winkler, T.H., Hauser, A.E., Niesner, R.A. (2021). Method for Multiplexed Dynamic Intravital Multiphoton Imaging. In: Zamir, E. (eds) Multiplexed Imaging. Methods in Molecular Biology, vol 2350. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1593-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1593-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1592-8

  • Online ISBN: 978-1-0716-1593-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics