Skip to main content

Mass Spectrometry-Based Lipidomics: An Overview

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

Abstract

Over the last few decades, MS-based lipidomics has emerged as a powerful tool to study lipids in biological systems. This success is driven by the constant demand for complete and reliable data. The improvement of MS-based lipidomics will continue to be dependent on the advances in the technology of mass spectrometry and related techniques including separation and bioinformatics, and more importantly, on gaining insight into the knowledge of lipid chemistry essential to develop methodology for lipid analysis. It is hoped that the protocols in this book, collected from experts in their fields, can offer the beginner and the advanced user alike, useful tips toward successful lipidomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281–296. https://doi.org/10.1038/nrm.2017.138

    Article  CAS  PubMed  Google Scholar 

  2. Sohlenkamp C, Geiger O (2015) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40(1):133–159. https://doi.org/10.1093/femsre/fuv008

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura Y (2017) Plant phospholipid diversity: emerging functions in metabolism and protein–lipid interactions. Trends Plant Sci 22(12):1027–1040. https://doi.org/10.1016/j.tplants.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Guschina IA, Harwood JL (2013) Chemical diversity of lipids. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin, pp 268–279. https://doi.org/10.1007/978-3-642-16712-6_526

    Chapter  Google Scholar 

  5. Jain S, Caforio A, Driessen AJM (2014) Biosynthesis of archaeal membrane ether lipids. Front Microbiol 5:641–641. https://doi.org/10.3389/fmicb.2014.00641

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao Y-Y, Miao H, Cheng X-L, Wei F (2015) Lipidomics: novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 240:220–238. https://doi.org/10.1016/j.cbi.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  7. Conroy R, Mackie SA, Boney CM (2018) Disorders of lipid metabolism. In: Radovick S, Misra M (eds) Pediatric endocrinology: a practical clinical guide. Springer, Cham, pp 755–780. https://doi.org/10.1007/978-3-319-73782-9_33

    Chapter  Google Scholar 

  8. Stern G (2014) Niemann–Pick’s and Gaucher’s diseases. Parkinsonism Relat Disord 20:S143–S146. https://doi.org/10.1016/S1353-8020(13)70034-8

    Article  PubMed  Google Scholar 

  9. Koriem KMM (2017) A lipidomic concept in infectious diseases. Asian Pac J Trop Biomed 7(3):265–274. https://doi.org/10.1016/j.apjtb.2016.12.010

    Article  Google Scholar 

  10. Ghazaei C (2018) Mycobacterium tuberculosis and lipids: insights into molecular mechanisms from persistence to virulence. J Res Med Sci 23:63–63. https://doi.org/10.4103/jrms.JRMS_904_17

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mastronicolis SK, Arvanitis N, Karaliota A, Magiatis P, Heropoulos G, Litos C, Moustaka H, Tsakirakis A, Paramera E, Papastavrou P (2008) Coordinated regulation of cold-induced changes in fatty acids with cardiolipin and phosphatidylglycerol composition among phospholipid species for the food pathogen Listeria monocytogenes. Appl Environ Microbiol 74(14):4543–4549. https://doi.org/10.1128/aem.02041-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee S, Xu W, Hsu F-F, Patel J, Huang J, Zhang K (2019) Sterol methyltransferase is required for optimal mitochondrial function and virulence in Leishmania major. Mol Microbiol 111(1):65–81. https://doi.org/10.1111/mmi.14139

    Article  CAS  PubMed  Google Scholar 

  13. Leier HC, Weinstein JB, Kyle JE, Lee J-Y, Bramer LM, Stratton KG, Kempthorne D, Navratil AR, Tafesse EG, Hornemann T, Messer WB, Dennis EA, Metz TO, Barklis E, Tafesse FG (2020) A global lipid map defines a network essential for Zika virus replication. Nat Commun 11(1):3652. https://doi.org/10.1038/s41467-020-17433-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12(11):668–679

    Article  CAS  PubMed  Google Scholar 

  15. Hsu F-F (2018) Mass spectrometry-based shotgun lipidomics—a critical review from the technical point of view. Anal Bioanal Chem 410(25):6387–6409. https://doi.org/10.1007/s00216-018-1252-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang C, Wang M, Han X (2015) Applications of mass spectrometry for cellular lipid analysis. Mol BioSyst 11(3):698–713

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang M, Wang C, Han RH, Han X (2016) Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res 61:83–108

    Article  CAS  PubMed  Google Scholar 

  18. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610

    Article  CAS  PubMed  Google Scholar 

  19. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895. https://doi.org/10.1016/j.cell.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  20. Züllig T, Trötzmüller M, Köfeler HC (2020) Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem 412(10):2191–2209. https://doi.org/10.1007/s00216-019-02241-y

    Article  CAS  PubMed  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    Article  CAS  PubMed  Google Scholar 

  22. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  23. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han XL, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. https://doi.org/10.1194/jlr.R300004-JLR200

    Article  CAS  PubMed  Google Scholar 

  25. Ekroos K, Chernushevich IV, Simons K, Shevchenko A (2002) Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal Chem 74(5):941–949

    Article  CAS  PubMed  Google Scholar 

  26. Liebisch G, Drobnik W, Reil M, Trumbach B, Arnecke R, Olgemoller B, Roscher A, Schmitz G (1999) Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS). J Lipid Res 40(8):1539–1546

    Article  CAS  PubMed  Google Scholar 

  27. Staden R (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 6(7):2601–2610. https://doi.org/10.1093/nar/6.7.2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gardner RC, Howarth AJ, Hahn P, Brown-Luedi M, Shepherd RJ, Messing J (1981) The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Res 9(12):2871–2888. https://doi.org/10.1093/nar/9.12.2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690

    Article  CAS  PubMed  Google Scholar 

  30. McDonald WH, Yates JR 3rd (2002) Shotgun proteomics and biomarker discovery. Dis Markers 18(2):99–105. https://doi.org/10.1155/2002/505397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Wang C, Han X (2019) Tutorial on lipidomics. Anal Chim Acta 1061:28–41. https://doi.org/10.1016/j.aca.2019.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu Z, Bagarolo GI, Thoroe-Boveleth S, Jankowski J (2020) “Lipidomics”: mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2020.06.009

  33. Holcapek M, Jandera P, Zderadicka P, Hrubá L (2003) Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 29(2):195–215

    Article  Google Scholar 

  34. Nygren H, Seppänen-Laakso T, Castillo S, Hyötyläinen T, Orešič M (2011) Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics for studies of body fluids and tissues. Methods Mol Biol 708:247–257

    Article  CAS  PubMed  Google Scholar 

  35. Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal Chem 61:192–206. https://doi.org/10.1016/j.trac.2014.04.017

    Article  CAS  Google Scholar 

  36. Pham TH, Zaeem M, Fillier TA, Nadeem M, Vidal NP, Manful C, Cheema S, Cheema M, Thomas RH (2019) Targeting modified lipids during routine lipidomics analysis using HILIC and C30 reverse phase liquid chromatography coupled to mass spectrometry. Sci Rep 9(1):5048. https://doi.org/10.1038/s41598-019-41556-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolrab D, Chocholoušková M, Jirásko R, Peterka O, Holčapek M (2020) Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography-mass spectrometry and hydrophilic interaction liquid chromatography-mass spectrometry. Anal Bioanal Chem 412(10):2375–2388. https://doi.org/10.1007/s00216-020-02473-3

    Article  CAS  PubMed  Google Scholar 

  38. Takeda H, Izumi Y, Takahashi M, Paxton T, Tamura S, Koike T, Yu Y, Kato N, Nagase K, Shiomi M, Bamba T (2018) Widely-targeted quantitative lipidomics method by supercritical fluid chromatography triple quadrupole mass spectrometry. J Lipid Res 59(7):1283–1293. https://doi.org/10.1194/jlr.D083014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lísa M, Holčapek M (2018) UHPSFC/ESI-MS analysis of lipids. Methods Mol Biol 1730:73–82. https://doi.org/10.1007/978-1-4939-7592-1_5

    Article  CAS  PubMed  Google Scholar 

  40. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87(3):1422–1436. https://doi.org/10.1021/ac504720m

    Article  CAS  PubMed  Google Scholar 

  41. Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811(11):935–945. https://doi.org/10.1016/j.bbalip.2011.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Papan C, Penkov S, Herzog R, Thiele C, Kurzchalia T, Shevchenko A (2014) Systematic screening for novel lipids by shotgun lipidomics. Anal Chem 86(5):2703–2710. https://doi.org/10.1021/ac404083u

    Article  CAS  PubMed  Google Scholar 

  43. Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES, Wagoner J, Polyak SJ, Metz TO, Dey SK, Smith RD, Burnum-Johnson KE, Baker ES (2016) Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141(5):1649–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lapthorn C, Pullen F, Chowdhry BZ (2013) Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev 32(1):43–71. https://doi.org/10.1002/mas.21349

    Article  CAS  PubMed  Google Scholar 

  45. Lin M-H, Hsu F-F, Crumrine D, Meyer J, Elias PM, Miner JH (2019) Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 9(1):13254–13254. https://doi.org/10.1038/s41598-019-49684-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang HJ, Tatituri RVV, Goldner NK, Dantas G, Hsu FF (2020) Unveiling the biodiversity of lipid species in Corynebacteria- characterization of the uncommon lipid families in C. glutamicum and pathogen C. striatum by mass spectrometry. Biochimie 10(20):30156–30155

    Google Scholar 

  47. Antonelli M, Benedetti B, Cannazza G, Cerrato A, Citti C, Montone CM, Piovesana S, Laganà A (2020) New insights in hemp chemical composition: a comprehensive polar lipidome characterization by combining solid phase enrichment, high-resolution mass spectrometry, and cheminformatics. Anal Bioanal Chem 412(2):413–423

    Article  CAS  PubMed  Google Scholar 

  48. Almeida R, Pauling JK, Sokol E, Hannibal-Bach HK, Ejsing CS (2015) Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J Am Soc Mass Spectrom 26(1):133–148. https://doi.org/10.1007/s13361-014-1013-x

    Article  CAS  PubMed  Google Scholar 

  49. Züllig T, Köfeler HC (2020) High resolution mass spectrometry in lipidomics. Mass Spectrom Rev. https://doi.org/10.1002/mas.21627

  50. Pfeuffer J, Sachsenberg T, Alka O, Walzer M, Fillbrunn A, Nilse L, Schilling O, Reinert K, Kohlbacher O (2017) OpenMS—a platform for reproducible analysis of mass spectrometry data. J Biotechnol 261:142–148

    Article  CAS  PubMed  Google Scholar 

  51. Hartler J, Triebl A, Ziegl A, Trötzmüller M, Rechberger GN, Zeleznik OA, Zierler KA, Torta F, Cazenave-Gassiot A, Wenk MR, Fauland A, Wheelock CE, Armando AM, Quehenberger O, Zhang Q, Wakelam MJO, Haemmerle G, Spener F, Köfeler HC, Thallinger GG (2017) Deciphering lipid structures based on platform-independent decision rules. Nat Methods 14(12):1171–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11(1):395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng B, Kopczynski D, Pratt BS, Ejsing CS, Burla B, Hermansson M, Benke PI, Tan SH, Chan MY, Torta F, Schwudke D, Meckelmann SW, Coman C, Schmitz OJ, MacLean B, Manke M-C, Borst O, Wenk MR, Hoffmann N, Ahrends R (2020) LipidCreator workbench to probe the lipidomic landscape. Nat Commun 11(1):2057. https://doi.org/10.1038/s41467-020-15960-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  55. Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93

    Article  CAS  PubMed  Google Scholar 

  56. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12(6):523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Subramaniam S (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35(Database issue):D527–D532. https://doi.org/10.1093/nar/gkl838

    Article  CAS  PubMed  Google Scholar 

  58. Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10(8):755–758. https://doi.org/10.1038/nmeth.2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94(6):2339–2344

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zemski Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111(10):6491–6512. https://doi.org/10.1021/cr200280p

    Article  CAS  Google Scholar 

  61. Murphy RC, Gaskell SJ (2011) New applications of mass spectrometry in lipid analysis. J Biol Chem 286(29):25427–25433. https://doi.org/10.1074/jbc.R111.233478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang HJ, Hsu FF (2020) Revelation of acyl double bond positions on fatty acyl coenzyme A esters by MALDI/TOF mass spectrometry. J Am Soc Mass Spectrom 31(5):1047–1057

    Article  CAS  PubMed  Google Scholar 

  63. Frankfater C, Jiang X, Hsu F-F (2018) Characterization of long-chain fatty acid as N-(4-aminomethylphenyl) pyridinium derivative by MALDI LIFT-TOF/TOF mass spectrometry. J Am Soc Mass Spectrom. https://doi.org/10.1007/s13361-018-1993-z

  64. Fuchs B, Schiller J (2009) Application of MALDI-TOF mass spectrometry in lipidomics. Eur J Lipid Sci Technol 111(1):83–98. https://doi.org/10.1002/ejlt.200800223

    Article  CAS  Google Scholar 

  65. Fuchs B, Suss R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49(4):450–475

    Article  CAS  PubMed  Google Scholar 

  66. Furniss RCD, Kostrzewa M, Mavridou DAI, Larrouy-Maumus G (2020) The clue is in the lipid A: rapid detection of colistin resistance. PLoS Pathog 16(4):e1008331–e1008331. https://doi.org/10.1371/journal.ppat.1008331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nishino K, Hsu F-F, Turk J, Cromie MJ, Wösten MMSM, Groisman EA (2006) Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol Microbiol 61(3):645–654. https://doi.org/10.1111/j.1365-2958.2006.05273.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fujita Y, Naka T, McNeil MR, Yano I (2005) Intact molecular characterization of cord factor (trehalose 6,6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151(10):3403–3416. https://doi.org/10.1099/mic.0.28158-0

    Article  CAS  PubMed  Google Scholar 

  69. Larrouy-Maumus G, Puzo G (2015) Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis 95(1):75–85. https://doi.org/10.1016/j.tube.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  70. Fuchs B, Süß R, Nimptsch A, Schiller J (2008) MALDI-TOF-MS directly combined with TLC: a review of the current state. Chromatographia 69(1):95. https://doi.org/10.1365/s10337-008-0661-z

    Article  Google Scholar 

  71. Touboul D, Ollero M (2019) Lipidomics conquers a niche, consolidates growth. Int J Mol Sci 20(13):3188. https://doi.org/10.3390/ijms20133188

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH P30DK020579, P30DK056341, and R24GM136766 grants to Mass Spectrometry Resource of Washington University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hsu, FF. (2021). Mass Spectrometry-Based Lipidomics: An Overview. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics