Skip to main content

Choosing Fluorescent Probes and Labeling Systems

  • Protocol
  • First Online:
Confocal Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2304))

Abstract

Fluorescence microscopy is advantageous for investigating biological processes and mechanisms in living cells. One of the most important considerations when designing an experiment is the selection of an appropriate fluorescent probe. Equally important is deciding how the probe will be attached to the protein of interest. The advantages and disadvantages of different fluorescent probe types and their respective labeling methods are discussed to provide an overview on selecting appropriate fluorophores and labeling systems for fluorescence-based assays. Protocols are outlined when appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  2. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    Article  CAS  PubMed  Google Scholar 

  3. Jonkman J, Brown CM (2015) Any way you slice it-a comparison of confocal microscopy techniques. J Biomol Tech 26(2):54–65

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006(331):re2

    PubMed  Google Scholar 

  5. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120(Pt 24):4247–4260

    Article  CAS  PubMed  Google Scholar 

  6. Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3(8):591–596

    Article  CAS  PubMed  Google Scholar 

  7. Schneider AFL, Hackenberger CPR (2017) Fluorescent labelling in living cells. Curr Opin Biotechnol 48:61–68

    Article  CAS  PubMed  Google Scholar 

  8. Chaiyen P, Scrutton NS (2015) Special issue: flavins and flavoproteins: introduction. FEBS J 282(16):3001–3002

    Article  CAS  PubMed  Google Scholar 

  9. Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shu X et al (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324(5928):804–807

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chalfie M et al (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J et al (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  CAS  PubMed  Google Scholar 

  13. Toseland CP (2013) Fluorescent labeling and modification of proteins. J Chem Biol 6(3):85–95

    Article  PubMed  PubMed Central  Google Scholar 

  14. Javois LC (1999) Direct immunofluorescent labeling of cells. Methods Mol Biol 115:107–111

    CAS  PubMed  Google Scholar 

  15. Fili N, Toseland CP (2014) Fluorescence and labelling: how to choose and what to do. Exp Suppl 105:1–24

    CAS  PubMed  Google Scholar 

  16. Wang Y et al (2015) Excited state structural events of a dual-emission fluorescent protein biosensor for Ca(2)(+) imaging studied by femtosecond stimulated Raman spectroscopy. J Phys Chem B 119(6):2204–2218

    Article  CAS  PubMed  Google Scholar 

  17. Tang L et al (2015) Unraveling ultrafast photoinduced proton transfer dynamics in a fluorescent protein biosensor for Ca(2+) imaging. Chemistry 21(17):6481–6490

    Article  CAS  PubMed  Google Scholar 

  18. Zhu J et al (2015) Ultrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes. Sci Rep 5:12840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marini A et al (2010) What is solvatochromism? J Phys Chem B 114(51):17128–17135

    Article  CAS  PubMed  Google Scholar 

  20. Ha T et al (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci U S A 96(3):893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thorn TLK. Fluorescent protein properties. www.fpvis.org/FP.html. Accessed July 2019

  22. Eggeling C et al (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70(13):2651–2659

    Article  CAS  PubMed  Google Scholar 

  23. Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  PubMed  Google Scholar 

  24. Ono M et al (2001) Quantitative comparison of anti-fading mounting media for confocal laser scanning microscopy. J Histochem Cytochem 49(3):305–312

    Article  CAS  PubMed  Google Scholar 

  25. Cordes T et al (2011) Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Phys Chem Chem Phys 13(14):6699–6709

    Article  CAS  PubMed  Google Scholar 

  26. Henriques R et al (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95(5):322–331

    Article  CAS  PubMed  Google Scholar 

  27. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heilemann M et al (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48(37):6903–6908

    Article  CAS  PubMed  Google Scholar 

  29. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  CAS  PubMed  Google Scholar 

  31. Kim Y et al (2008) Efficient site-specific labeling of proteins via cysteines. Bioconjug Chem 19(3):786–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinez-Jothar L et al (2018) Insights into maleimide-thiol conjugation chemistry: conditions for efficient surface functionalization of nanoparticles for receptor targeting. J Control Release 282:101–109

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Yu LC (2008) Single-cell microinjection technology in cell biology. BioEssays 30(6):606–610

    Article  PubMed  Google Scholar 

  34. Zahid M, Robbins PD (2012) Protein transduction domains: applications for molecular medicine. Curr Gene Ther 12(5):374–380

    Article  CAS  PubMed  Google Scholar 

  35. Gautier A et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  CAS  PubMed  Google Scholar 

  36. Los GV et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382

    Article  CAS  PubMed  Google Scholar 

  37. Sun X et al (2011) Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. Chembiochem 12(14):2217–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keppler A et al (2004) Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32(4):437–444

    Article  CAS  PubMed  Google Scholar 

  39. Cole NB (2013) Site-specific protein labeling with SNAP-tags. Curr Protoc Protein Sci 73:30.1.1–30.1.16

    Article  Google Scholar 

  40. Griffin BA et al (2000) Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol 327:565–578

    Article  CAS  PubMed  Google Scholar 

  41. Hoffmann C et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2(3):171–176

    Article  CAS  PubMed  Google Scholar 

  42. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gu W et al (2007) Measuring cell motility using quantum dot probes. Methods Mol Biol 374:125–131

    PubMed  Google Scholar 

  44. Bruchez M Jr et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  CAS  PubMed  Google Scholar 

  45. Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10(8):751–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stepanenko OV et al (2017) Interaction of biliverdin chromophore with near-infrared fluorescent protein BphP1-FP engineered from bacterial phytochrome. Int J Mol Sci 18(5)

    Google Scholar 

  47. Rodriguez EA et al (2016) A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat Methods 13(9):763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shemetov AA, Oliinyk OS, Verkhusha VV (2017) How to increase brightness of near-infrared fluorescent proteins in mammalian cells. Cell Chem Biol 24(6):758–766.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ding WL et al (2017) Small monomeric and highly stable near-infrared fluorescent markers derived from the thermophilic phycobiliprotein, ApcF2. Biochim Biophys Acta, Mol Cell Res 1864(10):1877–1886

    Article  CAS  Google Scholar 

  50. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  CAS  PubMed  Google Scholar 

  51. Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217(Pt 1):1–15

    CAS  PubMed  Google Scholar 

  52. Patterson G et al (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen Y et al (2019) Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun Biol 2(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shaner NC et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6(10):713–717

    Article  CAS  PubMed  Google Scholar 

  56. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38(10):2887–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoi H et al (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401(5):776–791

    Article  CAS  PubMed  Google Scholar 

  58. Lam AJ et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9(10):1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fouquet C et al (2015) Improving axial resolution in confocal microscopy with new high refractive index mounting media. PLoS One 10(3):e0121096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kohl J et al (2014) Ultrafast tissue staining with chemical tags. Proc Natl Acad Sci U S A 111(36):E3805–E3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21(11):1387–1395

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George H. Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply and Springer Nature US

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacoby-Morris, K., Patterson, G.H. (2021). Choosing Fluorescent Probes and Labeling Systems. In: Brzostowski, J., Sohn, H. (eds) Confocal Microscopy. Methods in Molecular Biology, vol 2304. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1402-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1402-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1401-3

  • Online ISBN: 978-1-0716-1402-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics