Skip to main content

Concepts, Practices, and Interactive Tutorial for Allosteric Network Analysis of Molecular Dynamics Simulations

  • Protocol
  • First Online:
Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

Over the past decade, concepts of network theory in combination with dynamical information from conformational ensembles have been widely applied to gain insights in understanding allosteric regulation in biomolecules. In this chapter, we introduce the basic theories and protocols used in protein dynamics network analysis through a series of interactive python Jupyter notebook scripts. While various network analysis methods exist in the literature, here we focus on the two popular methods based on correlated atomic motions and pairwise interaction energies. While the tutorial is based on a small prototypic protein, the workflow and protocol introduced here are optimized to handle large membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stone J, Eargle J, Sethi A, Li L, Luthey-Schulten Z (2012) University of Illinois at Urbana-Champaign, Luthey-Schulten Group. NIH Resource for Macromolecular Modeling and Bioinformatics, Citeseer

    Google Scholar 

  2. Koukos PI, Glykos NM (2013) Grcarma: a fully automated task-oriented interface for the analysis of molecular dynamics trajectories. J Comput Chem 34(26):2310–2312

    Article  CAS  Google Scholar 

  3. Viloria JS, Allega MF, Lambrughi M, Papaleo E (2017) An optimal distance cutoff for contact-based protein structure networks using side-chain centers of mass. Sci Rep 7(1):1–11

    Article  Google Scholar 

  4. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  Google Scholar 

  5. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  6. Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler S et al (eds) (2016) MDAnalysis: a python package for the rapid analysis of molecular dynamics simulations. Python in science conference; 2016. Texas, Austin

    Google Scholar 

  7. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32(10):2319–2327

    Article  CAS  Google Scholar 

  8. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317

    Article  CAS  Google Scholar 

  9. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  10. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  Google Scholar 

  11. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1-3):43–56

    Article  CAS  Google Scholar 

  12. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  13. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25

    Article  Google Scholar 

  14. Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD (2006) Bio3D: an R package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696

    Article  CAS  Google Scholar 

  15. Botello-Smith WM, Luo Y (2019) Robust determination of protein allosteric signaling pathways. J Chem Theory Comput 15(4):2116–2126

    Article  CAS  Google Scholar 

  16. VanWart AT, Eargle J, Luthey-Schulten Z, Amaro RE (2012) Exploring residue component contributions to dynamical network models of Allostery. J Chem Theory Comput 8(8):2949–2961

    Article  CAS  Google Scholar 

  17. Van Wart AT, Durrant J, Votapka L, Amaro RE (2014) Weighted implementation of suboptimal paths (WISP): an optimized algorithm and tool for dynamical network analysis. J Chem Theory Comput 10(2):511–517

    Article  Google Scholar 

  18. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIRES Comput Mol Sci 3(2):198–210

    Article  CAS  Google Scholar 

  19. Miller BR, TD MG, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  Google Scholar 

  20. Lange OF, Grubmüller H (2005) Generalized correlation for biomolecular dynamics. Proteins 62(4):1053–1061

    Article  Google Scholar 

  21. Ribeiro AAST, Ortiz V (2014) Determination of signaling pathways in proteins through network theory: importance of the topology. J Chem Theory Comput 10(4):1762–1769

    Article  CAS  Google Scholar 

  22. Yen JY (1970) An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Q Appl Math 27(4):526–530

    Article  Google Scholar 

  23. Hagberg AA, Schult DA, Swart PJ (eds) (2008) Exploring network structure, dynamics, and function using NetworkX2008. Pasadena, CA USA

    Google Scholar 

  24. Csardi G, Nepusz T (2005) The igraph software package for complex network research. Int J Complex Syst 1695:1–9

    Google Scholar 

  25. Brandes U, Fleischer D (2005) Centrality Measures Based on Current Flow. STACS; 2005. Springer, New York

    Google Scholar 

  26. Stephenson K, Zelen M (1989) Rethinking centrality: methods and examples. Soc Networks 11(1):1–37

    Article  Google Scholar 

  27. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Networks 27(1):39–54

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH Grant R01-GM130834. Computational resources were provided via the Extreme Science and Engineering Discovery Environment (XSEDE) allocation TG-MCB160119, which is supported by NSF grant number ACI-154862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley M. Botello-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Botello-Smith, W.M., Luo, Y.L. (2021). Concepts, Practices, and Interactive Tutorial for Allosteric Network Analysis of Molecular Dynamics Simulations. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics