Skip to main content

Deconvolution of Multiple Rab Binding Domains Using the Batch Yeast 2-Hybrid Method DEEPN

  • Protocol
  • First Online:
Rab GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2293))

  • 778 Accesses

Abstract

A hallmark of functionally significant interactions between Rab proteins and their targets is whether that binding depends on the type of nucleotide bound to the Rab GTPase. A system that can directly compare those sets of interactions mediated by a Rab in its GTP-bound conformation versus its GDP bound conformation would provide a direct route to finding biologically relevant partners. Comprehensive large-scale yeast 2-hybrid assays allow a potential method to compare one interactome against another provided that the same set of potentially interacting partners is interrogated between samples. Here we describe the use of such a yeast 2-hybrid system that lends itself toward comparing pairs of Rab mutants, locked in either their GTP or GDP conformation. Importantly, using a complex library of protein fragments as potential binding (“prey”) partners, identification of interacting proteins as well as the domain(s) mediating those interactions can be determined using a series of sequence analyses and binary validation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pfeffer SR (2013) Rab GTPase regulation of membrane identity. Curr Opin Cell Biol 25(4):414–419. https://doi.org/10.1016/j.ceb.2013.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304. https://doi.org/10.1126/science.1062023

    Article  PubMed  CAS  Google Scholar 

  3. Ullrich O, Stenmark H, Alexandrov K, Huber LA, Kaibuchi K, Sasaki T, Takai Y, Zerial M (1993) Rab GDP dissociation inhibitor as a general regulator for the membrane association of Rab proteins. J Biol Chem 268(24):18143–18150

    Article  CAS  PubMed  Google Scholar 

  4. Der CJ, Finkel T, Cooper GM (1986) Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44(1):167–176. https://doi.org/10.1016/0092-8674(86)90495-2

    Article  PubMed  CAS  Google Scholar 

  5. Li G, Stahl PD (1993) Structure-function relationship of the small GTPase rab5. J Biol Chem 268(32):24475–24480

    Article  CAS  PubMed  Google Scholar 

  6. Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13(6):1287–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feig LA, Cooper GM (1988) Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins. Mol Cell Biol 8(6):2472–2478. https://doi.org/10.1128/mcb.8.6.2472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fukuda M (2010) How can mammalian Rab small GTPases be comprehensively analyzed?: development of new tools to comprehensively analyze mammalian Rabs in membrane traffic. Histol Histopathol 25(11):1473–1480. https://doi.org/10.14670/HH-25.1473

    Article  PubMed  CAS  Google Scholar 

  9. Kail M, Barnekow A (2008) Identification and characterization of interacting partners of Rab GTPases by yeast two-hybrid analyses. Methods Mol Biol 440:111–125. https://doi.org/10.1007/978-1-59745-178-9_9

    Article  PubMed  CAS  Google Scholar 

  10. Langemeyer L, Barr FA (2012) Analysis of Rab GTPases. Curr Protoc Cell Biol. Chapter 15:Unit 15 18. https://doi.org/10.1002/0471143030.cb1518s57

  11. Fuchs E, Haas AK, Spooner RA, Yoshimura S, Lord JM, Barr FA (2007) Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. J Cell Biol 177(6):1133–1143. https://doi.org/10.1083/jcb.200612068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pashkova N, Peterson TA, Krishnamani V, Breheny P, Stamnes M, Piper RC (2016) DEEPN as an approach for batch processing of yeast 2-hybrid interactions. Cell Rep 17(1):303–315. https://doi.org/10.1016/j.celrep.2016.08.095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Peterson TA, Stamnes MA, Piper RC (2018) A yeast 2-hybrid screen in batch to compare protein interactions. J Vis Exp 136:57801. https://doi.org/10.3791/57801

    Article  CAS  Google Scholar 

  14. Krishnamani V, Peterson TA, Piper RC, Stamnes MA (2018) Informatic analysis of sequence data from batch yeast 2-hybrid screens. J Vis Exp 136:57802. https://doi.org/10.3791/57802

    Article  CAS  Google Scholar 

  15. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-Laborie FJ, Charloteaux B, Choi D, Cote AG, Daley M, Deimling S, Desbuleux A, Dricot A, Gebbia M, Hardy MF, Kishore N, Knapp JJ, Kovacs IA, Lemmens I, Mee MW, Mellor JC, Pollis C, Pons C, Richardson AD, Schlabach S, Teeking B, Yadav A, Babor M, Balcha D, Basha O, Bowman-Colin C, Chin SF, Choi SG, Colabella C, Coppin G, D'Amata C, De Ridder D, De Rouck S, Duran-Frigola M, Ennajdaoui H, Goebels F, Goehring L, Gopal A, Haddad G, Hatchi E, Helmy M, Jacob Y, Kassa Y, Landini S, Li R, van Lieshout N, MacWilliams A, Markey D, Paulson JN, Rangarajan S, Rasla J, Rayhan A, Rolland T, San-Miguel A, Shen Y, Sheykhkarimli D, Sheynkman GM, Simonovsky E, Tasan M, Tejeda A, Tropepe V, Twizere JC, Wang Y, Weatheritt RJ, Weile J, Xia Y, Yang X, Yeger-Lotem E, Zhong Q, Aloy P, Bader GD, De Las Rivas J, Gaudet S, Hao T, Rak J, Tavernier J, Hill DE, Vidal M, Roth FP, Calderwood MA (2020) A reference map of the human binary protein interactome. Nature 580(7803):402–408. https://doi.org/10.1038/s41586-020-2188-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, Kamburov A, Ghiassian SD, Yang X, Ghamsari L, Balcha D, Begg BE, Braun P, Brehme M, Broly MP, Carvunis AR, Convery-Zupan D, Corominas R, Coulombe-Huntington J, Dann E, Dreze M, Dricot A, Fan C, Franzosa E, Gebreab F, Gutierrez BJ, Hardy MF, Jin M, Kang S, Kiros R, Lin GN, Luck K, MacWilliams A, Menche J, Murray RR, Palagi A, Poulin MM, Rambout X, Rasla J, Reichert P, Romero V, Ruyssinck E, Sahalie JM, Scholz A, Shah AA, Sharma A, Shen Y, Spirohn K, Tam S, Tejeda AO, Trigg SA, Twizere JC, Vega K, Walsh J, Cusick ME, Xia Y, Barabasi AL, Iakoucheva LM, Aloy P, De Las Rivas J, Tavernier J, Calderwood MA, Hill DE, Hao T, Roth FP, Vidal M (2014) A proteome-scale map of the human interactome network. Cell 159(5):1212–1226. https://doi.org/10.1016/j.cell.2014.10.050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545(7655):505–509. https://doi.org/10.1038/nature22366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites LP, Ordureau A, Rad R, Erickson BK, Wuhr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar RA, Harris T, Artavanis-Tsakonas S, Sowa ME, De Camilli P, Paulo JA, Harper JW, Gygi SP (2015) The BioPlex network: a systematic exploration of the human Interactome. Cell 162(2):425–440. https://doi.org/10.1016/j.cell.2015.06.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Banworth MJ, Li G (2018) Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 9(1-2):158–181. https://doi.org/10.1080/21541248.2017.1397833

    Article  PubMed  Google Scholar 

  20. Li G (2011) Rab GTPases, membrane trafficking and diseases. Curr Drug Targets 12(8):1188–1193. https://doi.org/10.2174/138945011795906561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Seabra MC, Goldstein JL, Sudhof TC, Brown MS (1992) Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 267(20):14497–14503

    Article  CAS  PubMed  Google Scholar 

  22. Kalin S, Hirschmann DT, Buser DP, Spiess M (2015) Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation. J Cell Sci 128(22):4126–4137. https://doi.org/10.1242/jcs.174664

    Article  PubMed  CAS  Google Scholar 

  23. Song GJ, Jeon H, Seo M, Jo M, Suk K (2018) Interaction between optineurin and Rab1a regulates autophagosome formation in neuroblastoma cells. J Neurosci Res 96(3):407–415. https://doi.org/10.1002/jnr.24143

    Article  PubMed  CAS  Google Scholar 

  24. Hattula K, Peranen J (2000) FIP-2, a coiled-coil protein, links huntingtin to Rab8 and modulates cellular morphogenesis. Curr Biol 10(24):1603–1606. https://doi.org/10.1016/s0960-9822(00)00864-2

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi H, Etoh K, Ohbayashi N, Fukuda M (2014) Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth. Biol Open 3(9):803–814. https://doi.org/10.1242/bio.20148771

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rahajeng J, Giridharan SS, Cai B, Naslavsky N, Caplan S (2010) Important relationships between Rab and MICAL proteins in endocytic trafficking. World J Biol Chem 1(8):254–264. https://doi.org/10.4331/wjbc.v1.i8.254

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klinger M, Wang W, Kuhns S, Barenz F, Drager-Meurer S, Pereira G, Gruss OJ (2014) The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol Biol Cell 25(4):495–507. https://doi.org/10.1091/mbc.E13-09-0526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kurtulmus B, Wang W, Ruppert T, Neuner A, Cerikan B, Viol L, Duenas-Sanchez R, Gruss OJ, Pereira G (2016) WDR8 is a centriolar satellite and centriole-associated protein that promotes ciliary vesicle docking during ciliogenesis. J Cell Sci 129(3):621–636. https://doi.org/10.1242/jcs.179713

    Article  PubMed  CAS  Google Scholar 

  29. Yukawa M, Ikebe C, Toda T (2015) The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. J Cell Biol 209(4):549–562. https://doi.org/10.1083/jcb.201412111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cox JV, Kansal R, Whitt MA (2016) Rab43 regulates the sorting of a subset of membrane protein cargo through the medial Golgi. Mol Biol Cell 27(11):1834–1844. https://doi.org/10.1091/mbc.E15-03-0123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Li C, Wei Z, Fan Y, Huang W, Su Y, Li H, Dong Z, Fukuda M, Khater M, Wu G (2017) The GTPase Rab43 controls the anterograde ER-Golgi trafficking and sorting of GPCRs. Cell Rep 21(4):1089–1101. https://doi.org/10.1016/j.celrep.2017.10.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Das S, Hehnly H, Doxsey S (2014) A new role for Rab GTPases during early mitotic stages. Small GTPases 5:e29565. https://doi.org/10.4161/sgtp.29565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ortiz D, Medkova M, Walch-Solimena C, Novick P (2002) Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 157(6):1005–1015. https://doi.org/10.1083/jcb.200201003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Piper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peterson, T.A., Piper, R.C. (2021). Deconvolution of Multiple Rab Binding Domains Using the Batch Yeast 2-Hybrid Method DEEPN . In: Li, G., Segev, N. (eds) Rab GTPases. Methods in Molecular Biology, vol 2293. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1346-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1346-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1345-0

  • Online ISBN: 978-1-0716-1346-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics