Skip to main content

Magnetic Tweezers-Based Single-Molecule Assays to Study Interaction of E. coli SSB with DNA and RecQ Helicase

  • Protocol
  • First Online:
Single Stranded DNA Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2281))

Abstract

The ability of magnetic tweezers to apply forces and measure molecular displacements has resulted in its extensive use to study the activity of enzymes involved in various aspects of nucleic acid metabolism. These studies have led to the discovery of key aspects of protein-protein and protein-nucleic acid interaction, uncovering dynamic heterogeneities that are lost to ensemble averaging in bulk experiments. The versatility of magnetic tweezers lies in the possibility and ease of tracking multiple parallel single-molecule events to yield statistically relevant single-molecule data. Moreover, they allow tracking both fast millisecond dynamics and slow processes (spanning several hours). In this chapter, we present the protocols used to study the interaction between E. coli SSB, single-stranded DNA (ssDNA), and E. coli RecQ helicase using magnetic tweezers. In particular, we propose constant force and force modulation assays to investigate SSB binding to DNA, as well as to characterize various facets of RecQ helicase activity stimulation by SSB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058. https://doi.org/10.1016/j.cell.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Biteen JS, Moerner WE (2010) Single-molecule and superresolution imaging in live bacteria cells. Cold Spring Harb Perspect Biol 2(3):a000448–a000448. https://doi.org/10.1101/cshperspect.a000448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hwang LC, Hohlbein J, Holden SJ, Kapanidis AN (2009) Single-molecule FRET: methods and biological applications. In: Handbook of single-molecule biophysics. Springer, New York, pp 129–163

    Chapter  Google Scholar 

  4. Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM (2004) Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1(2):133–139. https://doi.org/10.1038/nmeth714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505. https://doi.org/10.1038/nmeth.1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Mameren J, Peterman EJ, Wuite GJ (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36(13):4381–4389. https://doi.org/10.1093/nar/gkn412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Oijen AM (2011) Single-molecule approaches to characterizing kinetics of biomolecular interactions. Curr Opin Biotechnol 22(1):75–80. https://doi.org/10.1016/j.copbio.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171–190. https://doi.org/10.1146/annurev.biophys.36.101106.101451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82(6):3314–3329. https://doi.org/10.1016/s0006-3495(02)75672-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manosas M, Meglio A, Spiering MM, Ding F, Benkovic SJ, Barre FX, Saleh OA, Allemand JF, Bensimon D, Croquette V (2010) Magnetic tweezers for the study of DNA tracking motors. Methods Enzymol 475:297–320. https://doi.org/10.1016/s0076-6879(10)75013-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lionnet T, Allemand JF, Revyakin A, Strick TR, Saleh OA, Bensimon D, Croquette V (2012) Magnetic trap construction. Cold Spring Harb Protoc 2012(1):133–138. https://doi.org/10.1101/pdb.prot067496

    Article  PubMed  Google Scholar 

  12. Manosas M, Spiering MM, Ding F, et al (2012) Mechanism of strand displacement synthesis by DNA replicative polymerases. Nucleic Acids Res 40:6174–6186. https://doi.org/10.1093/nar/gks253

  13. Hodeib S, Raj S, Manosas M, et al (2017) A mechanistic study of helicases with magnetic traps: Helicases Studied with Magnetic Tweezers. Protein Science 26:1314–1336. https://doi.org/10.1002/pro.3187

  14. Bagchi D, Manosas M, Zhang W, Manthei KA, Hodeib S, Ducos B, Keck JL, Croquette V (2018) Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB. Nucleic Acids Res 46(16):8500–8515. https://doi.org/10.1093/nar/gky647

  15. Dessinges MN, Lionnet T, Xi XG, Bensimon D, Croquette V (2004) Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc Natl Acad Sci U S A 101(17):6439–6444. https://doi.org/10.1073/pnas.0306713101

  16. Fiorini F, Bagchi D, Le Hir H, Croquette V (2015) Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities. Nat Commun 6:7581. https://doi.org/10.1038/ncomms8581

    Article  PubMed  PubMed Central  Google Scholar 

  17. Manosas M, Perumal SK, Croquette V, Benkovic SJ (2012) Direct observation of stalled fork restart via fork regression in the T4 replication system. Science 338(6111):1217–1220. https://doi.org/10.1126/science.1225437

    Article  CAS  PubMed  Google Scholar 

  18. Manosas M, Spiering MM, Ding F, Bensimon D, Allemand JF, Benkovic SJ, Croquette V (2012) Mechanism of strand displacement synthesis by DNA replicative polymerases. Nucleic Acids Res 40(13):6174–6186. https://doi.org/10.1093/nar/gks253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raj S, Bagchi D, Orero JV, Banroques J, Tanner NK, Croquette V (2019) Mechanistic characterization of the DEAD-box RNA helicase Ded1 from yeast as revealed by a novel technique using single-molecule magnetic tweezers. Nucleic Acids Res 47(7):3699–3710. https://doi.org/10.1093/nar/gkz057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanner NA, van Oijen AM (2010) Visualizing DNA replication at the single-molecule level. Methods Enzymol 475:259–278. https://doi.org/10.1016/s0076-6879(10)75011-4

    Article  CAS  PubMed  Google Scholar 

  21. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43(5):289–318. https://doi.org/10.1080/10409230802341296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Curth U, Genschel J, Urbanke C, Greipel J (1996) In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res 24(14):2706–2711. https://doi.org/10.1093/nar/24.14.2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Choi M, Stanenas AG, Byrd AK, Raney KD, Cohan C, Bianco PR (2011) Novel, fluorescent, SSB protein chimeras with broad utility. Protein Sci 20(6):1005–1020. https://doi.org/10.1002/pro.633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shereda RD, Bernstein DA, Keck JL (2007) A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem 282(26):19247–19258. https://doi.org/10.1074/jbc.M608011200

    Article  CAS  PubMed  Google Scholar 

  25. Killoran MP, Keck JL (2006) Sit down, relax and unwind: structural insights into RecQ helicase mechanisms. Nucleic Acids Res 34(15):4098–4105. https://doi.org/10.1093/nar/gkl538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mills M, Harami GM, Seol Y, Gyimesi M, Martina M, Kovács ZJ, Kovács M, Neuman KC (2017) RecQ helicase triggers a binding mode change in the SSB-DNA complex to efficiently initiate DNA unwinding. Nucleic Acids Res 45(20):11878–11890. https://doi.org/10.1093/nar/gkx939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shereda RD, Reiter NJ, Butcher SE, Keck JL (2009) Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB’s C terminus. J Mol Biol 386(3):612–625. https://doi.org/10.1016/j.jmb.2008.12.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manosas M, Spiering MM, Zhuang Z, Benkovic SJ, Croquette V (2009) Coupling DNA unwinding activity with primer synthesis in the bacteriophage T4 primosome. Nat Chem Biol 5(12):904–912. https://doi.org/10.1038/nchembio.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. George NP, Ngo KV, Chitteni-Pattu S, Norais CA, Battista JR, Cox MM, Keck JL (2012) Structure and cellular dynamics of Deinococcus radiodurans single-stranded DNA (ssDNA)-binding protein (SSB)-DNA complexes. J Biol Chem 287(26):22123–22132. https://doi.org/10.1074/jbc.M112.367573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bernstein DA, Keck JL (2003) Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res 31(11):2778–2785. https://doi.org/10.1093/nar/gkg376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bell JC, Liu B, Kowalczykowski SC (2015) Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. elife 4:e08646. https://doi.org/10.7554/eLife.08646

    Article  PubMed  PubMed Central  Google Scholar 

  32. Camunas-Soler J, Manosas M, Frutos S, Tulla-Puche J, Albericio F, Ritort F (2015) Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline. Nucleic Acids Res 43(5):2767–2779. https://doi.org/10.1093/nar/gkv087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC (2010) Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 7(3):299–341. https://doi.org/10.1016/j.plrev.2010.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Le S, Basu A, Chazin WJ, Yan J (2015) Mechanochemical regulations of RPA's binding to ssDNA. Sci Rep 5:9296. https://doi.org/10.1038/srep09296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lipfert J, Klijnhout S, Dekker NH (2010) Torsional sensing of small-molecule binding using magnetic tweezers. Nucleic Acids Res 38(20):7122–7132. https://doi.org/10.1093/nar/gkq598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11(11):835–841

    Article  CAS  Google Scholar 

  37. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86(2):469–489. https://doi.org/10.1016/0022-2836(74)90031-x

    Article  CAS  PubMed  Google Scholar 

  38. Bujalowski W, Lohman TM (1986) Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25(24):7799–7802. https://doi.org/10.1021/bi00372a003

    Article  CAS  PubMed  Google Scholar 

  39. Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570. https://doi.org/10.1146/annurev.bi.63.070194.002523

    Article  CAS  PubMed  Google Scholar 

  40. Roy R, Kozlov AG, Lohman TM, Ha T (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369(5):1244–1257. https://doi.org/10.1016/j.jmb.2007.03.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suksombat S, Khafizov R, Kozlov AG, Lohman TM, Chemla YR (2015) Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. elife 4:e08193. https://doi.org/10.7554/eLife.08193

    Article  PubMed Central  Google Scholar 

  42. Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, Lohman TM, Ha T (2011) SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146(2):222–232. https://doi.org/10.1016/j.cell.2011.06.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lionnet T, Allemand JF, Revyakin A, Strick TR, Saleh OA, Bensimon D, Croquette V (2012) Single-molecule studies using magnetic traps. Cold Spring Harb Protoc 2012(1):34–49. https://doi.org/10.1101/pdb.top067488

    Article  PubMed  Google Scholar 

  44. Naufer MN, Morse M, Moller GB, McIsaac J, Rouzina I, Beuning PJ, Williams MC (2020) E. coli single stranded binding protein (SSB) self-regulates wrapping of SSDNA through competitive binding. Biophys J 118(3):70a

    Article  Google Scholar 

  45. Lionnet T, Dawid A, Bigot S, Barre FX, Saleh OA, Heslot F, Allemand JF, Bensimon D, Croquette V (2006) DNA mechanics as a tool to probe helicase and translocase activity. Nucleic Acids Res 34(15):4232–4244. https://doi.org/10.1093/nar/gkl451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lionnet T, Spiering MM, Benkovic SJ, Bensimon D, Croquette V (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc Natl Acad Sci U S A 104(50):19790–19795. https://doi.org/10.1073/pnas.0709793104

    Article  PubMed  PubMed Central  Google Scholar 

  47. Manosas M, Xi XG, Bensimon D, Croquette V (2010) Active and passive mechanisms of helicases. Nucleic Acids Res 38(16):5518–5526. https://doi.org/10.1093/nar/gkq273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kocsis ZS, Sarlós K, Harami GM, Martina M, Kovács M (2014) A nucleotide-dependent and HRDC domain-dependent structural transition in DNA-bound RecQ helicase. J Biol Chem 289(9):5938–5949. https://doi.org/10.1074/jbc.M113.530741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bouchiat C et al (1999) Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys J 76:409–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bagchi, D., Zhang, W., Hodeib, S., Ducos, B., Croquette, V., Manosas, M. (2021). Magnetic Tweezers-Based Single-Molecule Assays to Study Interaction of E. coli SSB with DNA and RecQ Helicase. In: Oliveira, M.T. (eds) Single Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 2281. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1290-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1290-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1289-7

  • Online ISBN: 978-1-0716-1290-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics