Skip to main content

Quantifying the Affinity of Trypanosoma cruzi RPA-1 to the Single-Stranded DNA Overhang of the Telomere Using Surface Plasmon Resonance

  • Protocol
  • First Online:
Single Stranded DNA Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2281))

Abstract

Surface plasmon resonance (SPR) biosensors provide real-time binding affinity measurements between a pair of biomolecules, characterizing its interaction dynamics. An example of Trypanosoma cruzi’s RPA-1 and a single-stranded DNA telomere sequence is presented with detailed guidelines and fundamentals for SPR technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quinn JG, O’Neill S, Doyle A, McAtamney C, Diamond D, MacCraith BD, O’Kennedy R (2000) Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions. Anal Biochem 281(2):135–143. https://doi.org/10.1006/abio.2000.4564

    Article  CAS  PubMed  Google Scholar 

  2. Davis TM, Wilson WD (2000) Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data. Anal Biochem 284(2):348–353. https://doi.org/10.1006/abio.2000.4726

    Article  CAS  PubMed  Google Scholar 

  3. Papalia GA, Giannetti AM, Arora N, Myszka DG (2008) Thermodynamic characterization of pyrazole and azaindole derivatives binding to p38 mitogen-activated protein kinase using Biacore T100 technology and van’t Hoff analysis. Anal Biochem 383(2):255–264. https://doi.org/10.1016/j.ab.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  4. Capelli D, Parravicini C, Pochetti G, Montanari R, Temporini C, Rabuffetti M, Maria Trincavelli L, Daniele S, Fumagalli M, Saporiti S, Bonfanti E, Abbracchio MP, Eberini I, Ceruti S, Calleri E, Capaldi S (2020) Surface plasmon resonance as a tool for ligand binding investigation of engineered GPR17 receptor, a G protein coupled receptor involved in myelination. Front Chem 7:910. https://doi.org/10.3389/fchem.2019.00910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304. https://doi.org/10.1016/0250-6874(83)85036-7

    Article  CAS  Google Scholar 

  6. Liedberg B, Nylander C, Lunström I (1995) Biosensing with surface plasmon resonance—how it all started. Biosens Bioelectron 10(8):i–ix. https://doi.org/10.1016/0956-5663(95)96965-2

    Article  CAS  PubMed  Google Scholar 

  7. Jason-Moller L, Murphy M, Bruno J (2006) Overview of Biacore systems and their applications. Curr Protoc Protein Sci 19:19.13.1–19.13.14. https://doi.org/10.1002/0471140864.ps1913s45

    Article  Google Scholar 

  8. Biacore® Sensor Surface Handbook (2003) Version AA. Biacore AB

    Google Scholar 

  9. Cullen DC, Brown RG, Lowe CR (1987) Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Bios 3(4):211–225. https://doi.org/10.1016/0265-928x(87)85002-2

    Article  CAS  Google Scholar 

  10. Liu Y, Wilson WD (2010) Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection. Methods Mol Biol 613:1–23. https://doi.org/10.1007/978-1-60327-418-0_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang S, Poon GMK, Wilson WD (2015) Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods Mol Biol 1334:313–332. https://doi.org/10.1007/978-1-4939-2877-4_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen B, Tanious FA, Wilson WD (2007) Biosensor-surface plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions. Methods 42(2):150–161. https://doi.org/10.1016/j.ymeth.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  13. Myszka DG (2000) Kinetic, equilibrium, and thermodynamic analysis of macromolecular interactions with BIACORE. Methods Enzymol 323:325–340. https://doi.org/10.1016/s0076-6879(00)23372-7

    Article  CAS  Google Scholar 

  14. Karlsson R (1999) Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology. J Molecul Recogn 12(5):285–292. https://doi.org/10.1002/(sici)1099-1352(199909/10)12:5<285::aid-jmr469>3.0.co;2-y

    Article  CAS  Google Scholar 

  15. Morton TA, Myszka DG (1998) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Methods Enzymol 295:268–294. https://doi.org/10.1016/s0076-6879(98)95044-3

    Article  CAS  PubMed  Google Scholar 

  16. Lin LP, Huang LS, Lin CW, Lee CK, Chen JL, Hsu SM, Lin S (2005) Determination of binding constant of DNA-binding drug to target DNA by surface plasmon resonance biosensor technology. Curr Drug Targets 5(1):61–72. https://doi.org/10.2174/1568008053174697

    Article  CAS  Google Scholar 

  17. Schuck P, Huaying Z (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 627:15–54. https://doi.org/10.1007/978-1-60761-670-2_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66(1):61–92. https://doi.org/10.1146/annurev.biochem.66.1.61

    Article  CAS  PubMed  Google Scholar 

  19. Pavani RS, da Silva MS, Fernandes CAH, Morini FS, Araujo CB, Fontes MRM, Sant’Anna OA, Machado CR, Cano MI, Fragoso SP, Elias MC (2016) Replication protein A presents canonical functions and is also involved in the differentiation capacity of Trypanosoma cruzi. PLoS Negl Trop Dis 10(12):e0005181. https://doi.org/10.1371/journal.pntd.0005181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pavani RS, de Lima LP, Lima AA, Fernandes CAH, Fragoso SP, Calderano SG, Elias MC (2020) Nuclear export of replication protein A in the nonreplicative infective forms of Trypanosoma cruzi. FEBS Lett 594(10):1596–1607. https://doi.org/10.1002/1873-3468.13755

    Article  CAS  PubMed  Google Scholar 

  21. Pavani RS, Vitarelli MO, Fernandes CAH, Mattioli FF, Morone M, Menezes MC, Fontes MRM, Maria Cano MIN, Elias MC (2017) Replication protein A-1 has a preference for the telomeric G-rich sequence in Trypanosoma cruzi. J Eukaryot Microbiol 65(3):345–356. https://doi.org/10.1111/jeu.12478

    Article  CAS  PubMed  Google Scholar 

  22. Vaidyanathan VG, Xu L, Cho BP (2013) Binding kinetics of DNA-protein interaction using surface plasmon resonance. Protocol Exchange. https://doi.org/10.1038/protex.2013.054

  23. Biacore® Sensor Surface Handbook T200 (2010) 28-9768-78 Version AA. General Electric Company

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2013/07467-1; 2016/50050-2; 2017/07693-2) and Conselho Nacional de Pesquisa e Desenvolvimento (CNPq 306199/2018-1; 870219/1997-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carolina Elias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Oliveira Vitarelli, M., Elias, M.C. (2021). Quantifying the Affinity of Trypanosoma cruzi RPA-1 to the Single-Stranded DNA Overhang of the Telomere Using Surface Plasmon Resonance. In: Oliveira, M.T. (eds) Single Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 2281. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1290-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1290-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1289-7

  • Online ISBN: 978-1-0716-1290-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics