Skip to main content

Quantitative Phenotypic Analysis of Drug Sequestering Macrophage Subpopulations

  • Protocol
  • First Online:
Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 962 Accesses

Abstract

Macrophages reside in every tissue of the body and are the first-line of defense of the immune system. Their function is to entrap apoptotic cells, pathogens, and other particles and produce immune effector cytokines. It has also been shown that macrophages sequester xenobiotics, particularly lysosomotropic agents. One of the well-known and best studied lysosomotropic agents is the weakly basic antibiotic clofazimine. Interestingly, not all macrophages within a population, such as those present in a particular tissue or organ, accumulate xenobiotics to the same extent. Within every general population of macrophages, there is a distinct subpopulation of macrophages that express the xenobiotic sequestering phenotype. Thus, in this chapter, we explain how one can utilize clofazimine as a probe to explore the physical and biological markers that can ultimately distinguish this xenobiotic sequestering subpopulation of macrophages, specifically among the alveolar macrophages isolated from the lungs of mice treated with oral clofazimine for a period of several weeks. The experimental approach and the rationale behind choosing each marker is also explained. As a result, out of various biological markers (i.e., TLR2, TLR4, CLC7, TFEB, p65, V-ATPase) and physical markers (i.e., cell area and size), the physical markers were most closely associated with the xenobiotic sequestering subpopulation of macrophages. Other investigated molecular markers showed no statistically significant association with the xenobiotic sequestering phenotype. Some markers exhibited differences, but the variability in the phenotype rendered them a less reliable marker as compared to the associated increase in cell area and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nature reviews: immunology. Monocytes and macrophages. 2011 [cited 2016 Aug 19]. http://www.nature.com/nri/focus/macrophages/index.html?WT.ec_id=SLBU_COMMS

  2. Kaufmann AM, Krise JP (2007) Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 96(4):729–746

    Article  CAS  Google Scholar 

  3. Funk RS, Krise JP (2012) Cationic amphiphilic drugs cause a marked expansion of apparent lysosomal volume: implications for an intracellular distribution-based drug interaction. Mol Pharm 9(5):1384–1395

    Article  CAS  Google Scholar 

  4. Logan R et al (2014) Amine-containing molecules and the induction of an expanded lysosomal volume phenotype: a structure-activity relationship study. J Pharm Sci 103(5):1572–1580

    Article  CAS  Google Scholar 

  5. Logan R, Kong AC, Krise JP (2014) Time-dependent effects of hydrophobic amine-containing drugs on lysosome structure and biogenesis in cultured human fibroblasts. J Pharm Sci 103(10):3287–3296

    Article  CAS  Google Scholar 

  6. Sardiello M et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325(5939):473–477

    Article  CAS  Google Scholar 

  7. Visvikis O et al (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40(6):896–909

    Article  CAS  Google Scholar 

  8. Settembre C et al (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14(5):283–296

    Article  CAS  Google Scholar 

  9. Arbiser JL, Moschella SL (1995) Clofazimine: a review of its medical uses and mechanisms of action. J Am Acad Dermatol 32(2 Pt 1):241–247

    Article  CAS  Google Scholar 

  10. Dey T et al (2013) Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 68(2):284–293

    Article  CAS  Google Scholar 

  11. World Health Organization. Leprosy report. 2014 [cited 2016 Aug 16]. http://www.who.int/mediacentre/factsheets/fs101/en

  12. Baik J, Rosania GR (2012) Macrophages sequester clofazimine in an intracellular liquid crystal-like supramolecular organization. PLoS One 7(10):e47494

    Article  CAS  Google Scholar 

  13. Baik J, Rosania GR (2011) Molecular imaging of intracellular drug-membrane aggregate formation. Mol Pharm 8(5):1742–1749

    Article  CAS  Google Scholar 

  14. Baik J et al (2013) Multiscale distribution and bioaccumulation analysis of clofazimine reveals a massive immune system-mediated xenobiotic sequestration response. Antimicrob Agents Chemother 57(3):1218–1230

    Article  CAS  Google Scholar 

  15. Keswani RK et al (2015) Chemical analysis of drug biocrystals: a role for Counterion transport pathways in intracellular drug disposition. Mol Pharm 12(7):2528–2536

    Article  CAS  Google Scholar 

  16. Rzeczycki P et al (2017) Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy. Biomed Opt Express 8(2):860–872

    Article  CAS  Google Scholar 

  17. Keswani RK et al (2015) A far-red fluorescent probe for flow cytometry and image-based functional studies of xenobiotic sequestering macrophages. Cytometry A 87(9):855–867

    Article  CAS  Google Scholar 

  18. Yoon GS et al (2015) Phagocytosed clofazimine biocrystals can modulate innate immune signaling by inhibiting TNFalpha and boosting IL-1RA secretion. Mol Pharm 12(7):2517–2527

    Article  CAS  Google Scholar 

  19. Abcam (2020) Immunocytochemistry and immunofluorescence protocol. https://www.abcam.com/protocols/immunocytochemistry-immunofluorescence-protocol

  20. Murashov MD et al (2018) The physicochemical basis of Clofazimine-induced skin pigmentation. J Invest Dermatol 138(3):697–703

    Article  CAS  Google Scholar 

  21. Murashov MD et al (2018) Synthesis and characterization of a biomimetic formulation of clofazimine hydrochloride microcrystals for parenteral administration. Pharmaceutics 10(4)

    Google Scholar 

  22. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  23. Woldemichael T, Rosania GR (2017) The physiological determinants of drug-induced lysosomal stress resistance. PLoS One 12(11):e0187627

    Article  Google Scholar 

  24. Morissette G, Lodge R, Marceau F (2008) Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: procainamide-induced autophagic cell vacuolization. Toxicol Appl Pharmacol 228(3):364–377

    Article  CAS  Google Scholar 

  25. Ayala-Cuellar AP, Cho J, Choi KC (2019) Toll-like receptors: a pathway alluding to cancer control. J Cell Physiol 234(12):21707–21715

    Article  CAS  Google Scholar 

  26. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    Article  Google Scholar 

  27. Majewska M, Szczepanik M (2006) The role of Toll-like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation. Postepy Hig Med Dosw (Online) 60:52–63

    Google Scholar 

  28. Hopkins PA, Sriskandan S (2005) Mammalian toll-like receptors: to immunity and beyond. Clin Exp Immunol 140(3):395–407

    Article  CAS  Google Scholar 

  29. Rehli M et al (1999) Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics 56(1):111–120

    Article  CAS  Google Scholar 

  30. Palmieri M et al (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20(19):3852–3866

    Article  CAS  Google Scholar 

  31. Schlissel MS, Baltimore D (1989) Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. Cell 58(5):1001–1007

    Article  CAS  Google Scholar 

  32. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5):705–716

    Article  CAS  Google Scholar 

  33. Nolan GP et al (1991) DNA binding and I kappa B inhibition of the cloned p65 subunit of NF-kappa B, a rel-related polypeptide. Cell 64(5):961–969

    Article  CAS  Google Scholar 

  34. Baeuerle PA, Baltimore D (1988) I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242(4878):540–546

    Article  CAS  Google Scholar 

  35. Baeuerle PA, Baltimore D (1988) Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell 53(2):211–217

    Article  CAS  Google Scholar 

  36. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    Article  CAS  Google Scholar 

  37. Finbow ME, Harrison MA (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 324(Pt 3):697–712

    Article  CAS  Google Scholar 

  38. Dietz KJ et al (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52(363):1969–1980

    Article  CAS  Google Scholar 

  39. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    Article  CAS  Google Scholar 

  40. Santa Cruz Biotechnology. CLC-7 Antibody (C-15): sc-16444. 2016 [cited 2016 Aug 22]. http://www.scbt.com/datasheet-16444-clc-7-c-15-antibody.html

  41. Leisle L et al (2011) ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J 30(11):2140–2152

    Article  CAS  Google Scholar 

  42. Wang SP et al (2002) Regulation of enhanced vacuolar H+-ATPase expression in macrophages. J Biol Chem 277(11):8827–8834

    Article  CAS  Google Scholar 

  43. Hong L et al (2011) Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Atherosclerosis 216(1):59–66

    Article  CAS  Google Scholar 

  44. Jiang L et al (2012) Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification. J Cell Sci 125(Pt 22):5479–5488

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Woldemichael T et al (2018) Reverse engineering the intracellular self-assembly of a functional mechanopharmaceutical device. Sci Rep 8(1):2934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail D. Murashov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Murashov, M.D. (2021). Quantitative Phenotypic Analysis of Drug Sequestering Macrophage Subpopulations. In: Rosania, G.R., Thurber, G.M. (eds) Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1250-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1250-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1249-1

  • Online ISBN: 978-1-0716-1250-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics