Skip to main content

Two Plasmid-Based Systems for CRISPR/Cas9 Mediated Knockout of Target Genes

  • Protocol
  • First Online:
Detection of Cell Death Mechanisms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2255))

Abstract

CRISPR/Cas9-based gene editing is a recent advance that allows for the knockout or alteration of target genes within mammalian cells. Many variations of the technique exist, but here we describe two systems of plasmid-based CRISPR gene knockout which together allow for the selective knockout of virtually any gene target. Compared with other CRISPR-based systems, these plasmids have the advantages of delivering all the necessary components in one plasmid, choice of multiple selectable markers, and choice of route of administration into target cells. In addition, potential off-target effects from one system (dependent upon selection of target gene) can be overcome through use of the second system. Strategies for optimizing the knockout process and selection of finished cell lines are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42(10):6091–6105. https://doi.org/10.1093/nar/gku241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barrangou R (2015) The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32:36–41. https://doi.org/10.1016/j.coi.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  3. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, Lopez BS (2004) Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 14(5):611–623. https://doi.org/10.1016/j.molcel.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  8. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990. https://doi.org/10.1093/nar/gki912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31(2):294–301. https://doi.org/10.1016/j.molcel.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148. https://doi.org/10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  11. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29(2):149–153. https://doi.org/10.1038/nbt.1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148. https://doi.org/10.1186/s13059-016-1012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784. https://doi.org/10.1038/nmeth.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for the research of which the design and optimization of these protocols was a part was provided by American Cancer Society Postdoctoral Fellowship 131420-PF-17-236-01-DMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai M. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roberts, C.M., Ratner, E.S. (2021). Two Plasmid-Based Systems for CRISPR/Cas9 Mediated Knockout of Target Genes. In: Alvero, A.B., Mor, G.G. (eds) Detection of Cell Death Mechanisms. Methods in Molecular Biology, vol 2255. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1162-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1162-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1161-6

  • Online ISBN: 978-1-0716-1162-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics