Skip to main content

Methodology for Comprehensive Detection of Pyroptosis

  • Protocol
  • First Online:
Detection of Cell Death Mechanisms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2255))

Abstract

Pyroptosis is a new type of programmed cell death identified in recent years, which destroys the integrity of cell membranes by punching pores on them, resulting in cell lysis. Light- and dark-colored vesicles/pore-like structures on the membranes of pyroptotic cells are generally observed using light microscope, accompanied by cell swelling and cytoplasmic release. However, due to the release of the cell contents in both pyroptosis and necrosis, it is difficult to distinguish them solely by morphological characteristics. The mechanism of pyroptosis involves three major signaling pathways, all activating downstream gasdermin (GSDM) D and E, which results in the formation of pores (10–15 nm) on the cell membrane, while small cytoplasmic molecules such as interleukin (IL)-1 and IL-18 flow out from the pores and cause inflammation. The occurrence of pyroptosis can be determined by a combination of markers. These include cleavage of GSDM D and E, activation and release of IL-1β and IL-18, and activation of cysteinyl aspartate specific proteinase (caspase-1, -3, -4, -5, and -11). This chapter discusses several common methods to assist researchers in detecting pyroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sendler M, Mayerle J, Lerch MM (2016) Necrosis, apoptosis, necroptosis, pyroptosis: it matters how Acinar cells die during pancreatitis. Cell Mol Gastroenterol Hepatol 2(4):407–408

    Article  Google Scholar 

  2. Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26(9):1007–1020

    Article  CAS  Google Scholar 

  3. Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28(28):138–161

    Google Scholar 

  4. Vincent WJB, Freisinger CM, P-y L, Huttenlocher A, Sauer J-D (2016) Macrophages mediate flagellin induced inflammasome activation and host defense in zebrafish. Cell Microbiol 18(4):591–604. https://doi.org/10.1111/cmi.12536

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Chen X, Gueydan C, Han J (2017) Plasma membrane changes during programmed cell deaths. Cell Res 28:9–21. https://doi.org/10.1038/cr.2017.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kovacs S, Miao E (2017) Gasdermins: effectors of pyroptosis. Trends Cell Biol 27:673–684. https://doi.org/10.1016/j.tcb.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y (2018) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of GSDM E. China Agricultural University, Beijing

    Google Scholar 

  8. Ding J, Wang K, Wang L, Yang S, Qi S, Shi J, Sun H, Wang DC, Feng S (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111–116

    Article  CAS  Google Scholar 

  9. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113(28):7858–7863

    Article  CAS  Google Scholar 

  10. Bauernfeind F, Hornung V (2013) Of inflammasomes and pathogens - sensing of microbes by the inflammasome. EMBO Mol Med 5(6):814–826. https://doi.org/10.1002/emmm.201201771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223. https://doi.org/10.1016/j.immuni.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  12. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  Google Scholar 

  13. Kayagaki N, Warming S, Lamkanfi M, Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee W, Dixit V (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121. https://doi.org/10.1038/nature10558

    Article  CAS  PubMed  Google Scholar 

  14. Rogers C, Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri E (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:14128. https://doi.org/10.1038/ncomms14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Latz E, Xiao T, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  16. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14(1):10–22. https://doi.org/10.1038/sj.cdd.4402038

    Article  CAS  PubMed  Google Scholar 

  17. Keller M, Rueegg A, Werner S, Beer H-D (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132(5):818–831. https://doi.org/10.1016/j.cell.2007.12.040

    Article  CAS  PubMed  Google Scholar 

  18. Hilbi H, ., Chen Y, ., Thirumalai K, ., Zychlinsky A, . (1997) The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun 65 (12):5165–5170

    Article  CAS  Google Scholar 

  19. Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273(49):32895–32900

    Article  CAS  Google Scholar 

  20. Wang S, Miura M, Yk J, Zhu H, Gagliardini V, Shi L, Greenberg AH, Yuan J (1996) Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem 271(34):20580–20587. https://doi.org/10.1074/jbc.271.34.20580

    Article  CAS  PubMed  Google Scholar 

  21. Faucheu C, Diu A, Chan AW, Blanchet AM, Miossec C, Herve F, Collard-Dutilleul V, Gu Y, Aldape RA, Lippke JA (1995) A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells. EMBO J 14(9):1914–1922. https://doi.org/10.1002/j.1460-2075.1995.tb07183.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamens J, Paskind M, Hugunin M, Talanian RV, Allen H, Banach D, Bump N, Hackett M, Johnston CG, Li P (1995) Identification and characterization of ICH-2, a novel member of the interleukin-1 beta-converting enzyme family of cysteine proteases. J Biol Chem 270(25):15250–15256. https://doi.org/10.1074/jbc.270.25.15250

    Article  CAS  PubMed  Google Scholar 

  23. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490(7419):288–291. https://doi.org/10.1038/nature11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rathinam VAK, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses Caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150(3):606–619. https://doi.org/10.1016/j.cell.2012.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszyński A, Forsberg LS, Carlson RW, Dixit VM (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341(6151):1246–1249

    Article  CAS  Google Scholar 

  26. Kayagaki N, Warming S, Lamkanfi M, Vande WL, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121

    Article  CAS  Google Scholar 

  27. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274(29):20049–20052. https://doi.org/10.1074/jbc.274.29.20049

    Article  CAS  PubMed  Google Scholar 

  28. Rogers C, Fernandesalnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:1–14

    Article  Google Scholar 

  29. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roosegirma M, Phung QT (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671

    Article  CAS  Google Scholar 

  30. Ruan J, Xia S, Liu X, Lieberman J, Wu H (2018) Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557(7703):62–67. https://doi.org/10.1038/s41586-018-0058-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alnemri T, Wu J, Yu J-W, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri E (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604. https://doi.org/10.1038/sj.cdd.4402194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feng, Y., Huang, X. (2021). Methodology for Comprehensive Detection of Pyroptosis. In: Alvero, A.B., Mor, G.G. (eds) Detection of Cell Death Mechanisms. Methods in Molecular Biology, vol 2255. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1162-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1162-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1161-6

  • Online ISBN: 978-1-0716-1162-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics