Skip to main content

Chemogenetic (DREADD) Exploration of Circuits Mediating Reward-Motivated Attention

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

Abstract

The brain reward circuit is complex and it plays an important role in reward-motivated behavior and is fundamental for species survival. It is also implicated in several diseases that involve motivational deficits such as depression and schizophrenia. Due to its complex circuitry involving differential sub-neuronal populations and glia, traditional lesioning, and pharmacological manipulations have failed to differentiate the effect of these complex, intermingled circuitry. Designer receptors exclusively activated by designer drugs (DREADDs) provide a minimally invasive option to circumvent these issues. In this chapter, we address the method by which DREADD is applied in behavioral neuroscience to explore the brain reward circuit in our laboratory. We highlight the potential difficulties faced by new users of this technology and provide some of our methods to overcome them. When used properly, the DREADD system is a versatile tool to interrogate circuits and brain areas associated with reward-motivated behavior and thus is a valuable addition to any behavioral neuroscientist’s methodological toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625

    Article  CAS  PubMed  Google Scholar 

  2. Dichter GS, Damiano CA, Allen JA (2012) Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord. https://doi.org/10.1186/1866-1955-4-19

  3. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cooper S, Robison AJ, Mazei-Robison MS (2017) Reward Circuitry in Addiction. Neurotherapeutics 14:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simpson EH, Balsam PD (2016) Behavioral neuroscience of motivation. Springer, Switzerland

    Book  Google Scholar 

  6. Balleine B, Killcross S (1994) Effects of ibotenic acid lesions of the nucleus accumbens on instrumental action. Behav Brain Res 65:181–193

    Article  CAS  PubMed  Google Scholar 

  7. Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27:8161–8165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blaiss CA, Janak PH (2009) The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behav Brain Res 200:22–32

    Article  PubMed  Google Scholar 

  9. Cassataro D et al (2013) Reverse pharmacogenetic modulation of the nucleus accumbens reduces ethanol consumption in a limited access paradigm. Neuropsychopharmacology 39:283–290

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hernandez PJ, Sadeghian K, Kelley AE (2002) Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 5:1327–1331

    Article  CAS  PubMed  Google Scholar 

  11. Parkinson JA et al (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity byd-amphetamine. J Neurosci 19:2401–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ward RD et al (2015) Orbitofrontal cortex mediates the differential impact of signaled-reward probability on discrimination accuracy. Front Neurosci 9:230. https://doi.org/10.3389/fnins.2015.00230

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hall-McMaster S et al (2017) Medial orbitofrontal cortex modulates associative learning between environmental cues and reward probability. Behav Neurosci 131:1–10

    Article  PubMed  Google Scholar 

  14. Robbins T (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380

    Article  CAS  PubMed  Google Scholar 

  15. Kelley AE et al (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795

    Article  CAS  PubMed  Google Scholar 

  16. Cox J, Witten IB (2019) Striatal circuits for reward learning and decision-making. Nat Rev Neurosci 1:482–494

    Article  Google Scholar 

  17. Bressan RA, Crippa JA (2005) The role of dopamine in reward and pleasure behaviour–review of data from preclinical research. Acta Psychiatr Scand 111:14–21

    Article  Google Scholar 

  18. Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    Article  PubMed  Google Scholar 

  19. Simon NW, Moghaddam B (2015) Neural processing of reward in adolescent rodents. Dev Cogn Neurosci 11:145–154

    Article  PubMed  Google Scholar 

  20. Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    Article  CAS  PubMed  Google Scholar 

  21. Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  22. Armbruster BN et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. PNAS 104:5163–5168

    Article  PubMed  PubMed Central  Google Scholar 

  23. Campbell EJ, Marchant NJ (2018) The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br J Pharmacol 175:994–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith KS et al (2016) DREADDS: use and application in behavioral neuroscience. Behav Neurosci 130:137–155

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu H, Roth BL (2014) Silencing synapses with DREADDs. Neuron 82:723–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier

    Google Scholar 

  28. Cetin A et al (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1:3166–3173

    Article  CAS  PubMed  Google Scholar 

  29. Manvich DF et al (2018) The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep 8:3840. https://doi.org/10.1038/s41598-018-22116-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacLaren DA et al (2016) Clozapine N-oxide administration produces behavioral effects in Long-Evans rats: implications for designing DREADD experiments. eNeuro. https://doi.org/10.1523/ENEURO.0219-16.2016

  31. Kügler S, Kilic E, Bähr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pattabhiraman, H., Ward, R.D. (2021). Chemogenetic (DREADD) Exploration of Circuits Mediating Reward-Motivated Attention. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics