Skip to main content

Carbon Fiber Probes for Real-Time Monitoring of Dopamine

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

  • 1193 Accesses

Abstract

Dopamine governs key behavioral processes including motivation, learning, and habit formation. Neurochemical monitoring of dopamine is necessary to identify its role in normal and pathologic conditions and in order to identify targets for treatment and to improve diagnosis. Recent advances have made it possible to record subsecond dopamine release over extended time frames (>months), opening up the possibility to evaluate dopamine’s role over behavioral adaptation, learning, neurodegeneration, and other behavioral processes that take longer than a few hours. Key innovations that we have introduced involve miniaturizing implanted probe dimensions to the size of individual neurons in order to avert inflammatory responses that can restrict chronic viability and sensitivity as well as limit the feasibility of introducing multiple probes into the brain. The purpose of this chapter is to describe methods to fabricate these sensors and to implement them in rodents for the recording of dopamine release over extended periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gonon F et al (1981) Voltammetry in the striatum of chronic freely moving rats: Detection of catechols and ascorbic acid. Brain Res 223:69–80

    Article  CAS  PubMed  Google Scholar 

  3. Stamford JA, Kruk ZL, Millar J (1988) Stimulated limbic and striatal dopamine release measured by fast cyclic voltammetry: anatomical, electrochemical and pharmacological characterisation. Brain Res 454:282–288

    Article  CAS  PubMed  Google Scholar 

  4. Clark JJ et al (2010) Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods 7:126–129

    Article  CAS  PubMed  Google Scholar 

  5. Garris PA et al (2002) Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J Neurochem 68:152–161

    Article  Google Scholar 

  6. Patriarchi T et al (2018) Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360(6396):eaat4422. https://doi.org/10.1126/science.aat4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun F et al (2018) A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:481–496.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    Article  CAS  PubMed  Google Scholar 

  9. Burrell MH et al (2015) A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. ACS Chem Neurosci 6:1802–1812

    Article  CAS  PubMed  Google Scholar 

  10. Kishida KT et al (2016) Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc Natl Acad Sci U S A 113:200–205

    Article  CAS  PubMed  Google Scholar 

  11. Oh Y et al (2018) Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosens Bioelectron 121:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wightman RM et al (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046–2054

    Article  PubMed  Google Scholar 

  13. Threlfell S et al (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64

    Article  CAS  PubMed  Google Scholar 

  14. Howe MW et al (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hernandez LF et al (2013) Selective effects of dopamine depletion and L-DOPA therapy on learning-related firing dynamics of striatal neurons. J Neurosci 33:4782–4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894–903

    Article  CAS  PubMed  Google Scholar 

  17. Williams GV, Millar J (1990) Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum. Neuroscience 39:1–16

    Article  CAS  PubMed  Google Scholar 

  18. Schwerdt HN et al (2017) Subcellular probes for neurochemical recording from multiple brain sites. Lab Chip 17:1104–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fox ME et al (2016) Cross-hemispheric dopamine projections have functional significance. Proc Natl Acad Sci U S A 113:6985–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cragg SJ, Hille CJ, Greenfield SA (2000) Dopamine release and uptake dynamics within nonhuman primate striatum in vitro. J Neurosci 20:8209–8217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taylor IM et al (2015) Kinetic diversity of dopamine transmission in the dorsal striatum. J Neurochem 133:522–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwerdt HN et al (2018) Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model. Commun Biol 144:1–11

    Google Scholar 

  23. Schwerdt HN et al (2017) Long-term dopamine neurochemical monitoring in primates. Proc Natl Acad Sci 114:13260–13265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zachek MK et al (2010) Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135:1556–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kozai TDY et al (2015) Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci 6:48–67

    Article  CAS  PubMed  Google Scholar 

  26. Spencer KC (2017) A three dimensional in vitro glial scar model to investigate the local strain effects from micromotion around neural implants. Lab Chip 17:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spencer KC et al (2017) Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci Rep 7:1952

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee RS (2019) Reward prediction error does not explain movement selectivity in DMS-projecting dopamine neurons. elife 8:e42992. https://doi.org/10.7554/eLife.42992

    Article  PubMed  PubMed Central  Google Scholar 

  29. Engelhard B et al (2019) Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt AC et al (2014) Multiple scan rate voltammetry for selective quantification of real-time enkephalin dynamics. Anal Chem 86:7806–7812

    Article  CAS  PubMed  Google Scholar 

  31. Hashemi P et al (2012) Brain dopamine and serotonin differ in regulation and its consequences. Proc Natl Acad Sci U S A 109:11510–11515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asri R et al (2016) Detection of evoked acetylcholine release in mouse brain slices. Analyst 141:6416–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takmakov P et al (2011) Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev Sci Instrum 82:074302

    Article  PubMed  PubMed Central  Google Scholar 

  34. Glantz JC, Woods JR (1994) Cocaine LD50 in long-evans rats is not altered by pregnancy or progesterone. Neurotoxicol Teratol 16:297–301

    Article  CAS  PubMed  Google Scholar 

  35. Heien MLAV, Johnson MA, Wightman RM (2004) Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal Chem 76:5697–5704

    Article  CAS  PubMed  Google Scholar 

  36. Keithley RB, Wightman RM (2011) Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry. ACS Chem Neurosci 2:514–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fortin SM et al (2015) Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake behaving rats. Curr Protoc Neurosci 70:7.25.1–7.25.20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. D. Hu (Massachusetts Institute of Technology) for help with surgical procedures. This work is supported by the National Institute of Biomedical Imaging and Bioengineering (R01 EB016101 to A.M.G. and M.J.C.), the National Institute of Neurological Disorders and Stroke (R01 NS025529 to A.M.G., F32 NS093897 and K99 NS107639 to H.N.S), the Army Research Office (W911NF-16-1-0474), the Saks Kavanaugh Foundation, the Nancy Lurie Marks Family Foundation, and Dr. Tenley Albright (to A.M.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen N. Schwerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schwerdt, H.N., Graybiel, A.M., Cima, M.J. (2021). Carbon Fiber Probes for Real-Time Monitoring of Dopamine. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics