Skip to main content

Positron Emission Tomography of the Reward System

  • Protocol
  • First Online:
The Brain Reward System

Abstract

Recently, great efforts have been focused on understanding and treating reward-related dysfunction in psychiatric disorders. This has led to preclinical and clinical advances in understanding the neurobiology of the reward system, highlighting the case of the field of neuroimaging. In this respect, neuroimaging has an unprecedented potential to unravel the neurobiology of different pathologies, covering a wide spectrum, from structural plasticity in gray and white matter to evoked neuronal responses, neuronal network dynamics, global and regional perfusion and metabolism, receptor-binding studies, or neurotransmitter release. Among the different medical imaging techniques, positron emission tomography (PET), single-photon emission computed tomography (SPECT), or functional magnetic resonance imaging (fMRI) have been extensively applied to study different aspects of mental and psychiatric disorders. Therefore, this chapter focused on molecular neuroimaging of the dopamine reward system by means of PET technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abi-Dargham A, Horga G (2016) The search for imaging biomarkers in psychiatric disorders. Nat Med 22(11):1248–1255

    Article  CAS  PubMed  Google Scholar 

  2. Newberg AB et al (2011) Positron emission tomography in psychiatric disorders. Ann N Y Acad Sci 1228:E13–E25

    Article  PubMed  Google Scholar 

  3. Gasull-Camos J et al (2017) Differential patterns of subcortical activity evoked by glial GLT-1 blockade in prelimbic and infralimbic cortex: relationship to antidepressant-like effects in rats. Int J Neuropsychopharmacol 20(12):988–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Green MV et al (2001) High resolution PET, SPECT and projection imaging in small animals. Comput Med Imaging Graph 25(2):79–86

    Article  CAS  PubMed  Google Scholar 

  5. Pascau J et al (2009) Automated method for small-animal PET image registration with intrinsic validation. Mol Imaging Biol 11(2):107–113

    Article  PubMed  Google Scholar 

  6. Ravasi L et al (2011) Use of [18F]fluorodeoxyglucose and the ATLAS small animal PET scanner to examine cerebral functional activation by whisker stimulation in unanesthetized rats. Nucl Med Commun 32(5):336–342

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shimoji K et al (2004) Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling. J Nucl Med 45(4):665–672

    CAS  PubMed  Google Scholar 

  8. Soto-Montenegro ML et al (2015) Functional neuroimaging of amphetamine-induced striatal neurotoxicity in the pleiotrophin knockout mouse model. Neurosci Lett 591:132–137

    Article  CAS  PubMed  Google Scholar 

  9. Vaquero JJ et al (2014) In-line high resolution PET and 3T MRI hybrid device for preclinical multimodal imaging. EJNMMI Phys 1(Suppl 1):A7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Higuera-Matas A et al (2011) Chronic cannabinoid administration to periadolescent rats modulates the metabolic response to acute cocaine in the adult brain. Mol Imaging Biol 13(3):411–415

    Article  CAS  PubMed  Google Scholar 

  11. Lauber DT et al (2017) State of the art in vivo imaging techniques for laboratory animals. Lab Anim 51(5):465–478

    Article  CAS  PubMed  Google Scholar 

  12. Soto-Montenegro ML et al (2009) Detection of visual activation in the rat brain using 2-deoxy-2-[(18)F]fluoro-D: -glucose and statistical parametric mapping (SPM). Mol Imaging Biol 11(2):94–99

    Article  CAS  PubMed  Google Scholar 

  13. Thanos PK et al (2008) Differences in response to food stimuli in a rat model of obesity: in-vivo assessment of brain glucose metabolism. Int J Obes 32(7):1171–1179

    Article  CAS  Google Scholar 

  14. Berger A (2003) How does it work? Positron emission tomography. BMJ 326(7404):1449

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lancelot S, Zimmer L (2010) Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci 31(9):411–417

    Article  CAS  PubMed  Google Scholar 

  16. Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47(2):302–312

    CAS  PubMed  Google Scholar 

  17. Arlicot N et al (2012) Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol 39(4):570–578

    Article  CAS  PubMed  Google Scholar 

  18. Cerami C, Iaccarino L, Perani D (2017) Molecular imaging of neuroinflammation in neurodegenerative dementias: the role of in vivo PET imaging. Int J Mol Sci 18(5):993

    Article  CAS  PubMed Central  Google Scholar 

  19. Cho H et al (2016) Tau PET in Alzheimer disease and mild cognitive impairment. Neurology 87(4):375–383

    Article  CAS  PubMed  Google Scholar 

  20. Crawshaw AA, Robertson NP (2017) The role of TSPO PET in assessing neuroinflammation. J Neurol 264(8):1825–1827

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hagens M, van Berckel B, Barkhof F (2016) Novel MRI and PET markers of neuroinflammation in multiple sclerosis. Curr Opin Neurol 29(3):229–236

    Article  CAS  PubMed  Google Scholar 

  22. Lagarde J, Sarazin M, Bottlaender M (2018) In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 125(5):847–867

    Article  CAS  Google Scholar 

  23. Payer DE et al (2016) D3 dopamine receptor-preferring [11C]PHNO PET imaging in Parkinson patients with dyskinesia. Neurology 86(3):224–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng S et al (2013) Dopamine: PET imaging and Parkinson disease. PET Clin 8(4):469–485

    Article  PubMed  Google Scholar 

  25. Wood H (2014) Parkinson disease: 18F-DTBZ PET tracks dopaminergic degeneration in patients with Parkinson disease. Nat Rev Neurol 10(6):305

    Article  PubMed  Google Scholar 

  26. Xia C et al (2017) Association of in vivo [18F]AV-1451 Tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol 74(4):427–436

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laruelle M (1995) et al, SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 36(7):1182–1190

    CAS  PubMed  Google Scholar 

  28. Klein MO et al (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39(1):31–59

    Article  PubMed  Google Scholar 

  29. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  PubMed  Google Scholar 

  30. Stepnicki P, Kondej M, Kaczor AA (2018) Current concepts and treatments of Schizophrenia. Molecules 23(8):2087

    Article  CAS  PubMed Central  Google Scholar 

  31. Walsh JP, Akopian G (2019) Physiological aging at striatal synapses. J Neurosci Res 97(12):1720–1727

    CAS  PubMed  Google Scholar 

  32. Zhang S, Wang R, Wang G (2019) Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Neurosci 10(2):945–953

    Article  CAS  PubMed  Google Scholar 

  33. Vernaleken I et al (2006) Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge. NeuroImage 30(4):1332–1339

    Article  PubMed  Google Scholar 

  34. Sioka C, Fotopoulos A, Kyritsis AP (2010) Recent advances in PET imaging for evaluation of Parkinson’s disease. Eur J Nucl Med Mol Imaging 37(8):1594–1603

    Article  PubMed  Google Scholar 

  35. Criswell SR et al (2018) [(18)F]FDOPA positron emission tomography in manganese-exposed workers. Neurotoxicology 64:43–49

    Article  CAS  PubMed  Google Scholar 

  36. Dreher JC et al (2008) Age-related changes in midbrain dopaminergic regulation of the human reward system. Proc Natl Acad Sci U S A 105(39):15106–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruottinen HM et al (2000) An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology 54(2):502–504

    Article  CAS  PubMed  Google Scholar 

  38. Ito K et al (2002) Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain 125(Pt 6):1358–1365

    Article  PubMed  Google Scholar 

  39. Bruck A et al (2005) Cortical 6-[18F]fluoro-L-dopa uptake and frontal cognitive functions in early Parkinson's disease. Neurobiol Aging 26(6):891–898

    Article  CAS  PubMed  Google Scholar 

  40. Cropley VL et al (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59(10):898–907

    Article  CAS  PubMed  Google Scholar 

  41. Becker G et al (2017) Comparative assessment of 6-[(18)F]fluoro-L-m-tyrosine and 6-[(18) F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson’s disease rat model. J Neurochem 141(4):626–635

    Article  CAS  PubMed  Google Scholar 

  42. Kanazawa M et al (2016) Evaluation of 6-11C-Methyl-m-Tyrosine as a PET probe for presynaptic dopaminergic activity: a comparison PET study with beta-11C-l-DOPA and 18F-FDOPA in Parkinson Disease Monkeys. J Nucl Med 57(2):303–308

    Article  CAS  PubMed  Google Scholar 

  43. Rademacher L et al (2016) Effects of smoking cessation on presynaptic dopamine function of addicted male smokers. Biol Psychiatry 80(3):198–206

    Article  CAS  PubMed  Google Scholar 

  44. Heinz A et al (2005) Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 162(8):1515–1520

    Article  PubMed  Google Scholar 

  45. Deserno L et al (2015) Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum. Eur J Neurosci 41(4):477–486

    Article  PubMed  Google Scholar 

  46. Napier TC et al (2015) Linking neuroscience with modern concepts of impulse control disorders in Parkinson’s disease. Mov Disord 30(2):141–149

    Article  PubMed  Google Scholar 

  47. Majuri J et al (2017) Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology 42(5):1169–1177

    Article  CAS  PubMed  Google Scholar 

  48. Avram M et al (2019) Reduced striatal dopamine synthesis capacity in patients with schizophrenia during remission of positive symptoms. Brain 142(6):1813–1826

    Article  PubMed  Google Scholar 

  49. Demjaha A et al (2012) Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry 169(11):1203–1210

    Article  PubMed  Google Scholar 

  50. Seeman P (2013) Schizophrenia and dopamine receptors. Eur Neuropsychopharmacol 23(9):999–1009

    Article  CAS  PubMed  Google Scholar 

  51. Doot RK et al (2019) Selectivity of probes for PET imaging of dopamine D3 receptors. Neurosci Lett 691:18–25

    Article  CAS  PubMed  Google Scholar 

  52. Banerjee A et al (2013) Click chemistry based synthesis of dopamine D4 selective receptor ligands for the selection of potential PET tracers. Bioorg Med Chem Lett 23(22):6079–6082

    Article  CAS  PubMed  Google Scholar 

  53. Lacivita E et al (2014) Design, synthesis, lipophilic properties, and binding affinities of potential ligands in positron emission tomography (PET) for visualization of brain dopamine D4 receptors. Chem Biodivers 11(2):299–310

    Article  CAS  PubMed  Google Scholar 

  54. Halldin C et al (1998) Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortial D1-dopamine receptors. J Nucl Med 39(12):2061–2068

    CAS  PubMed  Google Scholar 

  55. Cropley VL et al (2008) Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res 163(2):171–182

    Article  CAS  PubMed  Google Scholar 

  56. Leung K (2004) (R)-(+)-8-Chloro-2,3,4,5-tetrahydro-3-[(11)C]methyl-5-phenyl-1H-3-benzazepin-7-ol ([(11)C]SCH 23390). In: Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, Bethesda, MD

    Google Scholar 

  57. Matheson GJ et al (2017) Reliability of volumetric and surface-based normalisation and smoothing techniques for PET analysis of the cortex: a test-retest analysis using [(11)C]SCH-23390. NeuroImage 155:344–353

    Article  CAS  PubMed  Google Scholar 

  58. Ram S, Ehrenkaufer RE, Spicer LD (1989) Synthesis of the labeled D1 receptor antagonist SCH 23390 using [11C]carbon dioxide. Int J Rad Appl Instrum A 40(5):425–427

    Article  CAS  PubMed  Google Scholar 

  59. Finnema SJ et al (2015) Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology 232(21–22):4129–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farde L et al (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A 82(11):3863–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mukherjee J et al (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46(3):170–188

    Article  CAS  PubMed  Google Scholar 

  62. Halldin C et al (1995) Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36(7):1275–1281

    CAS  PubMed  Google Scholar 

  63. Willeit M et al (2006) High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO. Biol Psychiatry 59(5):389–394

    Article  CAS  PubMed  Google Scholar 

  64. Hwang DR, Kegeles LS, Laruelle M (2000) (−)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors. Nucl Med Biol 27(6):533–539

    Article  CAS  PubMed  Google Scholar 

  65. Finnema SJ et al (2005) A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey. Nucl Med Biol 32(4):353–360

    Article  CAS  PubMed  Google Scholar 

  66. Finnema SJ et al (2014) (18)F-MCL-524, an (18)F-Labeled dopamine D2 and D3 receptor agonist sensitive to dopamine: a preliminary PET Study. J Nucl Med 55(7):1164–1170

    Article  CAS  PubMed  Google Scholar 

  67. Finnema SJ et al (2010) Current state of agonist radioligands for imaging of brain dopamine D2/D3 receptors in vivo with positron emission tomography. Curr Top Med Chem 10(15):1477–1498

    Article  CAS  PubMed  Google Scholar 

  68. Karrer TM et al (2017) Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging 57:36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Antonini A, Leenders KL (1993) Dopamine D2 receptors in normal human brain: effect of age measured by positron emission tomography (PET) and [11C]-raclopride. Ann N Y Acad Sci 695:81–85

    Article  CAS  PubMed  Google Scholar 

  70. Seaman KL et al (2019) Differential regional decline in dopamine receptor availability across adulthood: linear and nonlinear effects of age. Hum Brain Mapp 40(10):3125–3138

    PubMed  PubMed Central  Google Scholar 

  71. Dang LC et al (2016) Associations between dopamine D2 receptor availability and BMI depend on age. NeuroImage 138:176–183

    Article  CAS  PubMed  Google Scholar 

  72. Schwarz J et al (1993) 123I-iodobenzamide-SPECT in 83 patients with de novo parkinsonism. Neurology 43(12 Suppl 6):S17–S20

    CAS  PubMed  Google Scholar 

  73. Brandt J et al (1990) D2 receptors in Huntington’s disease: positron emission tomography findings and clinical correlates. J Neuropsychiatry Clin Neurosci 2(1):20–27

    Article  CAS  PubMed  Google Scholar 

  74. Sedvall G et al (1994) Dopamine D1 receptor number—a sensitive PET marker for early brain degeneration in Huntington’s disease. Eur Arch Psychiatry Clin Neurosci 243(5):249–255

    Article  CAS  PubMed  Google Scholar 

  75. Volkow ND et al (1990) Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 147(6):719–724

    Article  CAS  PubMed  Google Scholar 

  76. Ashok AH et al (2017) Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. JAMA Psychiat 74(5):511–519

    Article  Google Scholar 

  77. Fotros A et al (2013) Cocaine cue-induced dopamine release in amygdala and hippocampus: a high-resolution PET [(1)(8)F]fallypride study in cocaine dependent participants. Neuropsychopharmacology 38(9):1780–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Naylor JE et al (2017) Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [(18)F]Fallypride. Drug Alcohol Depend 179:254–259

    Article  CAS  PubMed  Google Scholar 

  79. Hietala J et al (1994) Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology 116(3):285–290

    Article  CAS  PubMed  Google Scholar 

  80. Rominger A et al (2012) [18F]Fallypride PET measurement of striatal and extrastriatal dopamine D 2/3 receptor availability in recently abstinent alcoholics. Addict Biol 17(2):490–503

    Article  CAS  PubMed  Google Scholar 

  81. Egerton A et al (2009) The dopaminergic basis of human behaviors: a review of molecular imaging studies. Neurosci Biobehav Rev 33(7):1109–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez D et al (2009) Dopamine D1 receptors in cocaine dependence measured with PET and the choice to self-administer cocaine. Neuropsychopharmacology 34(7):1774–1782

    Article  CAS  PubMed  Google Scholar 

  83. Wulff S et al (2019) The relation between dopamine D2 receptor blockade and the brain reward system: a longitudinal study of first-episode schizophrenia patients. Psychol Med 2019:1–9

    Google Scholar 

  84. Okubo Y et al (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385(6617):634–636

    Article  CAS  PubMed  Google Scholar 

  85. Poels EM et al (2013) In vivo binding of the dopamine-1 receptor PET tracers [(1)(1)C]NNC112 and [(1)(1)C]SCH23390: a comparison study in individuals with schizophrenia. Psychopharmacology 228(1):167–174

    Article  CAS  PubMed  Google Scholar 

  86. Caravaggio F et al (2019) What proportion of striatal D2 receptors are occupied by endogenous dopamine at baseline? A meta-analysis with implications for understanding antipsychotic occupancy. Neuropharmacology 163:107591

    Article  CAS  PubMed  Google Scholar 

  87. Mitelman SA et al (2019) Positive association between cerebral grey matter metabolism and dopamine D2/D3 receptor availability in healthy and schizophrenia subjects: an (18)F-fluorodeoxyglucose and (18)F-fallypride positron emission tomography study. World J Biol Psychiatry 2019:1–15

    Google Scholar 

  88. Mitelman SA et al (2020) Dopamine receptor density and white matter integrity: (18)F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 14(3):736–752

    Article  PubMed  Google Scholar 

  89. Jucaite A et al (2005) Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 57(3):229–238

    Article  CAS  PubMed  Google Scholar 

  90. Hantraye P et al (1992) Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism. Neuroreport 3(3):265–268

    Article  CAS  PubMed  Google Scholar 

  91. Huang T et al (2012) The influence of residual nor-beta-CFT in 11C CFT injection on the Parkinson disease diagnosis: a 11C CFT PET study. Clin Nucl Med 37(8):743–747

    Article  PubMed  Google Scholar 

  92. Rinne JO et al (2004) Unchanged striatal dopamine transporter availability in narcolepsy: a PET study with [11C]-CFT. Acta Neurol Scand 109(1):52–55

    Article  CAS  PubMed  Google Scholar 

  93. Sun X et al (2019) Quantitative research of (11)C-CFT and (18)F-FDG PET in Parkinson’s disease: a Pilot Study with NeuroQ software. Front Neurosci 13:299

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu L et al (2018) 11C-CFT-PET in Presymptomatic FTDP-17: a potential biomarker predicting onset. J Alzheimers Dis 61(2):613–618

    Article  CAS  PubMed  Google Scholar 

  95. Pizzagalli DA et al (2019) Assessment of striatal dopamine transporter binding in individuals with major depressive disorder: in vivo positron emission tomography and postmortem evidence. JAMA Psychiatry 76(8):854–861

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rieckmann A et al (2015) Putamen-midbrain functional connectivity is related to striatal dopamine transporter availability in patients with Lewy body diseases. Neuroimage Clin 8:554–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shirvan J et al (2019) Neuropathologic correlates of amyloid and dopamine transporter imaging in Lewy body disease. Neurology 93(5):e476–e484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Spencer TJ et al (2013) Functional genomics of attention-deficit/hyperactivity disorder (ADHD) risk alleles on dopamine transporter binding in ADHD and healthy control subjects. Biol Psychiatry 74(2):84–89

    Article  CAS  PubMed  Google Scholar 

  99. Spencer TJ et al (2010) A PET study examining pharmacokinetics and dopamine transporter occupancy of two long-acting formulations of methylphenidate in adults. Int J Mol Med 25(2):261–265

    PubMed  Google Scholar 

  100. Benveniste H et al (2005) Maternal and fetal 11C-cocaine uptake and kinetics measured in vivo by combined PET and MRI in pregnant nonhuman primates. J Nucl Med 46(2):312–320

    CAS  PubMed  Google Scholar 

  101. Fowler JS et al (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4(4):371–377

    Article  CAS  PubMed  Google Scholar 

  102. Volkow ND et al (1995) Long-lasting inhibition of in vivo cocaine binding to dopamine transporters by 3 beta-(4-iodophenyl)tropane-2-carboxylic acid methyl ester: RTI-55 or beta CIT. Synapse 19(3):206–211

    Article  CAS  PubMed  Google Scholar 

  103. Volkow ND et al (2000) Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci 67(12):1507–1515

    Article  CAS  PubMed  Google Scholar 

  104. Volkow ND et al (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155(10):1325–1331

    Article  CAS  PubMed  Google Scholar 

  105. Volkow ND et al (1996) Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology 14(3):159–168

    Article  CAS  PubMed  Google Scholar 

  106. Volkow ND et al (2007) Brain dopamine transporter levels in treatment and drug naive adults with ADHD. NeuroImage 34(3):1182–1190

    Article  PubMed  Google Scholar 

  107. Albin RL et al (2009) Striatal [11C]dihydrotetrabenazine and [11C]methylphenidate binding in Tourette syndrome. Neurology 72(16):1390–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fischer K et al (2012) In vivo quantification of dopamine transporters in mice with unilateral 6-OHDA lesions using [11C]methylphenidate and PET. NeuroImage 59(3):2413–2422

    Article  CAS  PubMed  Google Scholar 

  109. Gatley SJ et al (1995) Binding of d-threo-[11C]methylphenidate to the dopamine transporter in vivo: insensitivity to synaptic dopamine. Eur J Pharmacol 281(2):141–149

    Article  CAS  PubMed  Google Scholar 

  110. Johanson CE et al (2006) Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology 185(3):327–338

    Article  CAS  PubMed  Google Scholar 

  111. Sossi V et al (2012) In vivo dopamine transporter imaging in a unilateral 6-hydroxydopamine rat model of Parkinson disease using 11C-methylphenidate PET. J Nucl Med 53(5):813–822

    Article  CAS  PubMed  Google Scholar 

  112. Sossi V et al (2010) Levodopa and pramipexole effects on presynaptic dopamine PET markers and estimated dopamine release. Eur J Nucl Med Mol Imaging 37(12):2364–2370

    Article  CAS  PubMed  Google Scholar 

  113. Sossi V et al (2000) Analysis of four dopaminergic tracers kinetics using two different tissue input function methods. J Cereb Blood Flow Metab 20(4):653–660

    Article  CAS  PubMed  Google Scholar 

  114. Volkow ND et al (1995) Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch Gen Psychiatry 52(6):456–463

    Article  CAS  PubMed  Google Scholar 

  115. Farde L et al (1994) PET study of [11C]beta-CIT binding to monoamine transporters in the monkey and human brain. Synapse 16(2):93–103

    Article  CAS  PubMed  Google Scholar 

  116. Ginovart N et al (1997) PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120(Pt 3):503–514

    Article  PubMed  Google Scholar 

  117. Halldin C et al (1996) [11C]beta-CIT-FE, a radioligand for quantitation of the dopamine transporter in the living brain using positron emission tomography. Synapse 22(4):386–390

    Article  CAS  PubMed  Google Scholar 

  118. Laihinen AO et al (1995) PET studies on brain monoamine transporters with carbon-11-beta-CIT in Parkinson’s disease. J Nucl Med 36(7):1263–1267

    CAS  PubMed  Google Scholar 

  119. Lundkvist C et al (1997) [18F] beta-CIT-FP is superior to [11C] beta-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol 24(7):621–627

    Article  CAS  PubMed  Google Scholar 

  120. Suhara T et al (1996) Effects of cocaine on [11C]norepinephrine and [11C] beta-CIT uptake in the primate peripheral organs measured by PET. Ann Nucl Med 10(1):85–88

    Article  CAS  PubMed  Google Scholar 

  121. Ko JH, Lee CS, Eidelberg D (2017) Metabolic network expression in parkinsonism: clinical and dopaminergic correlations. J Cereb Blood Flow Metab 37(2):683–693

    Article  CAS  PubMed  Google Scholar 

  122. Leung K (2004) N-4-[(18)F]Fluorobut-2-yn-1-yl-2beta-carbomethoxy-3beta-phenyltropane. In: Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, Bethesda, MD

    Google Scholar 

  123. Leung K (2004) N-4-Fluorobut-2-yn-1-yl-2beta-carbo-[(11)C]methoxy-3beta-phenyltropane. In: Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information, Bethesda, MD

    Google Scholar 

  124. Niethammer M et al (2013) Parkinson's disease cognitive network correlates with caudate dopamine. NeuroImage 78:204–209

    Article  CAS  PubMed  Google Scholar 

  125. Pagano G, Niccolini F, Politis M (2016) Current status of PET imaging in Huntington's disease. Eur J Nucl Med Mol Imaging 43(6):1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Voon V et al (2014) Impulse control disorders in Parkinson’s disease: decreased striatal dopamine transporter levels. J Neurol Neurosurg Psychiatry 85(2):148–152

    Article  PubMed  Google Scholar 

  127. Erixon-Lindroth N et al (2005) The role of the striatal dopamine transporter in cognitive aging. Psychiatry Res 138(1):1–12

    Article  CAS  PubMed  Google Scholar 

  128. Aquilonius SM (1991) What has PET told us about Parkinson’s disease? Acta Neurol Scand Suppl 136:37–39

    Article  CAS  PubMed  Google Scholar 

  129. Edling C et al (1997) Do organic solvents induce changes in the dopaminergic system? Positron emission tomography studies of occupationally exposed subjects. Int Arch Occup Environ Health 70(3):180–186

    Article  CAS  PubMed  Google Scholar 

  130. Edling C et al (1997) Positron emission tomography studies of healthy volunteers--no effects on the dopamine terminals and synthesis after short-term exposure to toluene. Hum Exp Toxicol 16(3):171–176

    Article  CAS  PubMed  Google Scholar 

  131. Pike VW et al (1990) Labelled agents for PET studies of the dopaminergic system--some quality assurance methods, experience and issues. Int J Rad Appl Instrum A 41(5):483–492

    Article  CAS  PubMed  Google Scholar 

  132. Tedroff J et al (1992) Cerebral uptake and utilization of therapeutic [beta-11C]-L-DOPA in Parkinson's disease measured by positron emission tomography. Relations to motor response. Acta Neurol Scand 85(2):95–102

    Article  CAS  PubMed  Google Scholar 

  133. Tedroff J et al (1990) Striatal kinetics of [11C]-(+)-nomifensine and 6-[18F]fluoro-L-dopa in Parkinson's disease measured with positron emission tomography. Acta Neurol Scand 81(1):24–30

    Article  CAS  PubMed  Google Scholar 

  134. Varrone A, Halldin C (2010) Molecular imaging of the dopamine transporter. J Nucl Med 51(9):1331–1334

    Article  CAS  PubMed  Google Scholar 

  135. Kawamura K, Oda K, Ishiwata K (2003) Age-related changes of the [11C]CFT binding to the striatal dopamine transporters in the Fischer 344 rats: a PET study. Ann Nucl Med 17(3):249–253

    Article  CAS  PubMed  Google Scholar 

  136. Larsson M et al (2009) Age-related loss of olfactory sensitivity: association to dopamine transporter binding in putamen. Neuroscience 161(2):422–426

    Article  CAS  PubMed  Google Scholar 

  137. Oh M et al (2012) Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med 53(3):399–406

    Article  CAS  PubMed  Google Scholar 

  138. Troiano AR et al (2010) Dopamine transporter PET in normal aging: dopamine transporter decline and its possible role in preservation of motor function. Synapse 64(2):146–151

    Article  CAS  PubMed  Google Scholar 

  139. Lambert G, Karila L, Lowenstein W (2008) Neuroimaging and cocaine: mapping dependence? Presse Med 37(4 Pt 2):679–688

    Article  PubMed  Google Scholar 

  140. Le Foll B et al (2009) Baseline expression of alpha4beta2* nicotinic acetylcholine receptors predicts motivation to self-administer nicotine. Biol Psychiatry 65(8):714–716

    Article  CAS  PubMed  Google Scholar 

  141. Narendran R, Martinez D (2008) Cocaine abuse and sensitization of striatal dopamine transmission: a critical review of the preclinical and clinical imaging literature. Synapse 62(11):851–869

    Article  CAS  PubMed  Google Scholar 

  142. Spencer TJ et al (2006) PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry 163(3):387–395

    Article  PubMed  Google Scholar 

  143. Fazio P et al (2018) Nigrostriatal dopamine transporter availability in early Parkinson’s disease. Mov Disord 33(4):592–599

    Article  CAS  PubMed  Google Scholar 

  144. Gerasimou GP et al (2006) Molecular imaging (SPECT and PET) in the evaluation of patients with movement disorders. Nucl Med Rev Cent East Eur 9(2):147–153

    PubMed  Google Scholar 

  145. Saeed U et al (2017) Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener 6:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Marek K, Jennings D (2009) Can we image premotor Parkinson disease? Neurology 72(7 Suppl):S21–S26

    Article  PubMed  Google Scholar 

  147. Tiihonen J et al (1995) Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics. Nat Med 1(7):654–657

    Article  CAS  PubMed  Google Scholar 

  148. Spencer TJ et al (2007) Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane. Biol Psychiatry 62(9):1059–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hesse S et al (2009) Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Res 171(2):120–128

    Article  CAS  PubMed  Google Scholar 

  150. Volkow ND et al (2009) Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 302(10):1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Taylor SF et al (2000) In vivo measurement of the vesicular monoamine transporter in schizophrenia. Neuropsychopharmacology 23(6):667–675

    Article  CAS  PubMed  Google Scholar 

  152. Chang L et al (2007) Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102(Suppl 1):16–32

    Article  PubMed  Google Scholar 

  153. Frey KA, Koeppe RA, Kilbourn MR (2001) Imaging the vesicular monoamine transporter. Adv Neurol 86:237–247

    CAS  PubMed  Google Scholar 

  154. Huang ZR et al (2016) A novel potential positron emission tomography imaging agent for vesicular monoamine transporter type 2. PLoS One 11(9):e0161295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Perez-Lohman C et al (2018) Diagnostic utility of [11C]DTBZ positron emission tomography in clinically uncertain parkinsonism: experience of a single tertiary center. Rev Investig Clin 70(6):285–290

    CAS  Google Scholar 

  156. Koeppe RA et al (2008) Differentiating Alzheimer’s disease from dementia with Lewy bodies and Parkinson's disease with (+)-[11C]dihydrotetrabenazine positron emission tomography. Alzheimers Dement 4(1 Suppl 1):S67–S76

    PubMed  Google Scholar 

  157. Bohnen NI et al (2000) Decreased striatal monoaminergic terminals in Huntington disease. Neurology 54(9):1753–1759

    Article  CAS  PubMed  Google Scholar 

  158. Boileau I et al (2010) Influence of a low dose of amphetamine on vesicular monoamine transporter binding: a PET (+)[11C]DTBZ study in humans. Synapse 64(6):417–420

    Article  CAS  PubMed  Google Scholar 

  159. Zubieta JK et al (2001) Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol Psychiatry 49(2):110–116

    Article  CAS  PubMed  Google Scholar 

  160. Hirvonen J et al (2009) Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther 85(5):506–512

    Article  CAS  PubMed  Google Scholar 

  161. Deleu D, Northway MG, Hanssens Y (2002) Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet 41(4):261–309

    Article  CAS  PubMed  Google Scholar 

  162. Fowler JS et al (1997) Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 18(4):431–435

    Article  CAS  PubMed  Google Scholar 

  163. Fowler JS et al (1993) Monoamine oxidase B (MAO B) inhibitor therapy in Parkinson’s disease: the degree and reversibility of human brain MAO B inhibition by Ro 19 6327. Neurology 43(10):1984–1992

    Article  CAS  PubMed  Google Scholar 

  164. Carter SF et al (2019) Longitudinal association between astrocyte function and glucose metabolism in autosomal dominant Alzheimer’s disease. Eur J Nucl Med Mol Imaging 46(2):348–356

    Article  CAS  PubMed  Google Scholar 

  165. Olsen M et al (2018) Astroglial responses to amyloid-beta progression in a mouse model of Alzheimer’s disease. Mol Imaging Biol 20(4):605–614

    Article  CAS  PubMed  Google Scholar 

  166. Rodriguez-Vieitez E et al (2016) Comparison of early-phase 11C-Deuterium-l-deprenyl and 11C-Pittsburgh compound B PET for assessing brain perfusion in Alzheimer disease. J Nucl Med 57(7):1071–1077

    Article  CAS  PubMed  Google Scholar 

  167. Fowler JS et al (1998) An acute dose of nicotine does not inhibit MAO B in baboon brain in vivo. Life Sci 63(2):PL19–PL23

    Article  CAS  PubMed  Google Scholar 

  168. Fowler JS et al (1998) Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis 17(1):23–34

    Article  CAS  PubMed  Google Scholar 

  169. Kilbourn MR et al (1996) Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters. Nucl Med Biol 23(4):467–471

    Article  CAS  PubMed  Google Scholar 

  170. Zanderigo F et al (2018) [(11)C]Harmine binding to brain monoamine oxidase A: test-retest properties and noninvasive quantification. Mol Imaging Biol 20(4):667–681

    Article  CAS  PubMed  Google Scholar 

  171. Kolla NJ et al (2015) Lower monoamine oxidase-A total distribution volume in impulsive and violent male offenders with antisocial personality disorder and high psychopathic traits: an [(11)C] harmine positron emission tomography study. Neuropsychopharmacology 40(11):2596–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kolla NJ et al (2016) Elevated monoamine oxidase-A distribution volume in borderline personality disorder is associated with severity across mood symptoms, suicidality, and cognition. Biol Psychiatry 79(2):117–126

    Article  CAS  PubMed  Google Scholar 

  173. Soliman A et al (2011) Relationship of monoamine oxidase A binding to adaptive and maladaptive personality traits. Psychol Med 41(5):1051–1060

    Article  CAS  PubMed  Google Scholar 

  174. Meyer JH (2017) Neuroprogression and immune activation in major depressive disorder. Mod Trends Pharmacopsychiatry 31:27–36

    Article  PubMed  Google Scholar 

  175. Volkow ND et al (1996) PET evaluation of the dopamine system of the human brain. J Nucl Med 37(7):1242–1256

    CAS  PubMed  Google Scholar 

  176. Ding YS et al (1996) Mapping catechol-O-methyltransferase in vivo: initial studies with [18F]Ro41-0960. Life Sci 58(3):195–208

    Article  CAS  PubMed  Google Scholar 

  177. Higuera-Matas A et al (2008) Augmented acquisition of cocaine self-administration and altered brain glucose metabolism in adult female but not male rats exposed to a cannabinoid agonist during adolescence. Neuropsychopharmacology 33(4):806–813

    Article  CAS  PubMed  Google Scholar 

  178. Soto-Montenegro ML et al (2007) Effects of MDMA on blood glucose levels and brain glucose metabolism. Eur J Nucl Med Mol Imaging 34(6):916–925

    Article  CAS  PubMed  Google Scholar 

  179. Wolkin A et al (1987) Effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology 92(2):241–246

    Article  CAS  PubMed  Google Scholar 

  180. London ED et al (1990) Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and [fluorine 18]-fluorodeoxyglucose. Arch Gen Psychiatry 47(6):567–574

    Article  CAS  PubMed  Google Scholar 

  181. Dean B (2012) Neurochemistry of schizophrenia: the contribution of neuroimaging postmortem pathology and neurochemistry in schizophrenia. Curr Top Med Chem 12(21):2375–2392

    Article  CAS  PubMed  Google Scholar 

  182. Frankle WG et al (2005) Serotonin transporter availability in patients with schizophrenia: a positron emission tomography imaging study with [11C]DASB. Biol Psychiatry 57(12):1510–1516

    Article  CAS  PubMed  Google Scholar 

  183. Kim JH et al (2015) Serotonin transporter availability in thalamic subregions in schizophrenia: a study using 7.0-T MRI with [(11)C]DASB high-resolution PET. Psychiatry Res 231(1):50–57

    Article  PubMed  Google Scholar 

  184. Volkow ND et al (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. Am J Psychiatry 144(2):151–158

    Article  CAS  PubMed  Google Scholar 

  185. Bralet MC et al (2016) FDG-PET scans in patients with Kraepelinian and non-Kraepelinian schizophrenia. Eur Arch Psychiatry Clin Neurosci 266(6):481–494

    Article  PubMed  Google Scholar 

  186. Buchsbaum MS et al (1998) MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport 9(3):425–430

    Article  CAS  PubMed  Google Scholar 

  187. Buchsbaum MS et al (2002) Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder. Schizophr Res 54(1-2):141–150

    Article  PubMed  Google Scholar 

  188. Fujimoto T et al (2007) Abnormal glucose metabolism in the anterior cingulate cortex in patients with schizophrenia. Psychiatry Res 154(1):49–58

    Article  CAS  PubMed  Google Scholar 

  189. Hazlett EA et al (2004) Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia. Am J Psychiatry 161(2):305–314

    Article  PubMed  Google Scholar 

  190. Tamminga CA et al (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49(7):522–530

    Article  CAS  PubMed  Google Scholar 

  191. Bartlett EJ et al (1994) Effects of haloperidol challenge on regional cerebral glucose utilization in normal human subjects. Am J Psychiatry 151(5):681–686

    Article  CAS  PubMed  Google Scholar 

  192. Volkow ND et al (1986) Brain metabolism in patients with schizophrenia before and after acute neuroleptic administration. J Neurol Neurosurg Psychiatry 49(10):1199–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Darcourt J et al (2010) EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging 37(2):443–450

    Article  CAS  PubMed  Google Scholar 

  194. Van Laere K et al (2010) EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2. Eur J Nucl Med Mol Imaging 37(2):434–442

    Article  CAS  PubMed  Google Scholar 

  195. Varrone A et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36(12):2103–2110

    Article  PubMed  Google Scholar 

  196. Casquero-Veiga M et al (2018) Understanding deep brain stimulation: in vivo metabolic consequences of the electrode insertional effect. Biomed Res Int 2018:8560232

    Article  PubMed  PubMed Central  Google Scholar 

  197. Casquero-Veiga M et al (2019) Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: a PET and MRI study in the maternal immune stimulation animal model. Eur Neuropsychopharmacol 29(7):880–896

    Article  CAS  PubMed  Google Scholar 

  198. Soto-Montenegro ML, Pascau J, Desco M (2014) Response to deep brain stimulation in the lateral hypothalamic area in a rat model of obesity: in vivo assessment of brain glucose metabolism. Mol Imaging Biol 16(6):830–837

    Article  PubMed  Google Scholar 

  199. Hartung T (2010) Comparative analysis of the revised Directive 2010/63/EU for the protection of laboratory animals with its predecessor 86/609/EEC—a t4 report. ALTEX 27(4):285–303

    Article  PubMed  Google Scholar 

  200. Wells DJ (2011) Animal welfare and the 3Rs in European biomedical research. Ann N Y Acad Sci 1245:14–16

    Article  PubMed  Google Scholar 

  201. Schiffer WK, Mirrione MM, Dewey SL (2007) Optimizing experimental protocols for quantitative behavioral imaging with 18F-FDG in rodents. J Nucl Med 48(2):277–287

    CAS  PubMed  Google Scholar 

  202. Prando S et al (2019) Comparison of different quantification methods for 18F-fluorodeoxyglucose-positron emission tomography studies in rat brains. Clinics (Sao Paulo) 74:e1273

    Article  Google Scholar 

  203. Calvini P et al (2007) The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur J Nucl Med Mol Imaging 34(8):1240–1253

    Article  PubMed  Google Scholar 

  204. Valdes-Hernandez PA et al (2011) An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front Neuroinform 5:26

    PubMed  PubMed Central  Google Scholar 

  205. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4(3 Pt 1):153–158

    Article  CAS  PubMed  Google Scholar 

  206. Ichise M et al (2003) Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab 23(9):1096–1112

    Article  PubMed  Google Scholar 

  207. Ben Bouallegue F, Vauchot F, Mariano-Goulart D (2019) Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic (18) F-FDG PET. Med Phys 46(3):1260–1271

    Article  PubMed  Google Scholar 

  208. Bentourkia M (2006) Kinetic modeling of PET-FDG in the brain without blood sampling. Comput Med Imaging Graph 30(8):447–451

    Article  PubMed  Google Scholar 

  209. Bentourkia M, Zaidi H (2007) Tracer kinetic modeling in PET. PET Clin 2(2):267–277

    Article  PubMed  Google Scholar 

  210. Endres CJ et al (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17(9):932–942

    Article  CAS  PubMed  Google Scholar 

  211. Pan L et al (2017) Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data. Phys Med Biol 62(9):3566–3581

    Article  CAS  PubMed  Google Scholar 

  212. Juarez EJ et al (2019) Reproducibility of the correlative triad among aging, dopamine receptor availability, and cognition. Psychol Aging 34(7):921–932

    Article  PubMed  PubMed Central  Google Scholar 

  213. Veselinovic T et al (2018) The role of striatal dopamine D2/3 receptors in cognitive performance in drug-free patients with schizophrenia. Psychopharmacology 235(8):2221–2232

    Article  CAS  PubMed  Google Scholar 

  214. Vyas NS et al (2018) D2/D3 dopamine receptor binding with [F-18]fallypride correlates of executive function in medication-naive patients with schizophrenia. Schizophr Res 192:442–456

    Article  PubMed  Google Scholar 

  215. Milella MS et al (2016) Cocaine cue-induced dopamine release in the human prefrontal cortex. J Psychiatry Neurosci 41(5):322–330

    Article  PubMed  PubMed Central  Google Scholar 

  216. Leurquin-Sterk G et al (2018) Cerebral dopaminergic and glutamatergic transmission relate to different subjective responses of acute alcohol intake: an in vivo multimodal imaging study. Addict Biol 23(3):931–944

    Article  CAS  PubMed  Google Scholar 

  217. Pfeifer P et al (2017) Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system. Addict Biol 22(5):1449–1458

    Article  CAS  PubMed  Google Scholar 

  218. Barlow RL et al (2018) Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well as limbic corticostriatal connectivity. Int J Neuropsychopharmacol 21(7):705–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Acknowledgments to the Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III (PI17/01766) co-funded by European Regional Development Fund (ERDF), “A way of making Europe,” CIBERSAM, Delegación del Gobierno para el Plan Nacional sobre Drogas (2017/085), Fundación Alicia Koplowitz, Consejería de Educación e Investigación, Comunidad de Madrid, co-funded by European Social Fund “Investing in your future” (PEJD-2018-PRE/BMD-7899, PEJ-2017-TL/BMD-7385) and Fundación Tatiana Pérez de Guzmán el Bueno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Soto-Montenegro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romero-Miguel, D., Lamanna-Rama, N., Casquero-Veiga, M., Gómez-Rangel, V., Desco, M., Soto-Montenegro, M.L. (2021). Positron Emission Tomography of the Reward System. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics