Skip to main content

Measurements of Protein–DNA Complexes Interactions by Isothermal Titration Calorimetry (ITC) and Microscale Thermophoresis (MST)

  • Protocol
  • First Online:
Multiprotein Complexes

Abstract

Interactions between protein complexes and DNA are central regulators of the cell life. They control the activation and inactivation of a large set of nuclear processes including transcription, replication, recombination, repair, and chromosome structures. In the literature, protein–DNA interactions are characterized by highly complementary approaches including large-scale studies and analyses in cells. Biophysical approaches with purified materials help to evaluate if these interactions are direct or not. They provide quantitative information on the strength and specificity of the interactions between proteins or protein complexes and their DNA substrates. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) are widely used and are complementary methods to characterize nucleo-protein complexes and quantitatively measure protein–DNA interactions. We present here protocols to analyze the interactions between a DNA repair complex, Ku70–Ku80 (Ku) (154 kDa), and DNA substrates. ITC is a label-free method performed with both partners in solution. It serves to determine the dissociation constant (Kd), the enthalpy (ΔH), and the stoichiometry N of an interaction. MST is used to measure the Kd between the protein or the DNA labeled with a fluorescent probe. We report the data obtained on Ku–DNA interactions with ITC and MST and discuss advantages and drawbacks of both the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gavin AC, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  CAS  Google Scholar 

  2. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627

    Article  CAS  Google Scholar 

  3. Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614

    Article  CAS  Google Scholar 

  4. Blier PR, Griffith AJ, Craft J, Hardin JA (1993) Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J Biol Chem 268(10):7594–7601

    CAS  PubMed  Google Scholar 

  5. Arosio D, Costantini S, Kong Y, Vindigni A (2004) Fluorescence anisotropy studies on the Ku-DNA interaction: anion and cation effects. J Biol Chem 279(41):42826–42835

    Article  CAS  Google Scholar 

  6. Tadi SK, Tellier-Lebegue C, Nemoz C et al (2016) PAXX is an accessory c-NHEJ factor that associates with Ku70 and has overlapping functions with XLF. Cell Rep 17(2):541–555

    Article  CAS  Google Scholar 

  7. Britton S, Coates J, Jackson SP (2013) A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol 202(3):579–595

    Article  CAS  Google Scholar 

  8. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506

    Article  CAS  Google Scholar 

  9. Frit P, Ropars V, Modesti M, Charbonnier JB, Calsou P (2019) Plugged into the Ku-DNA hub: the NHEJ network. Prog Biophys Mol Biol 147:62–76

    Article  CAS  Google Scholar 

  10. Nemoz C, Ropars V, Frit P et al (2018) XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol 25(10):971–980

    Article  CAS  Google Scholar 

  11. Ropars V, Drevet P, Legrand P et al (2011) Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining. Proc Natl Acad Sci U S A 108(31):12663–12668

    Article  CAS  Google Scholar 

  12. Malivert L, Ropars V, Nunez M et al (2010) Delineation of the Xrcc4-interacting region in the globular head domain of cernunnos/XLF. J Biol Chem 285(34):26475–26483

    Article  CAS  Google Scholar 

  13. Bacquin A, Pouvelle C, Siaud N et al (2013) The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. Nucleic Acids Res 41(13):6501–6513

    Article  CAS  Google Scholar 

  14. Dherin C, Gueneau E, Francin M et al (2009) Characterization of a highly conserved binding site of Mlh1 required for exonuclease I-dependent mismatch repair. Mol Cell Biol 29(3):907–918

    Article  CAS  Google Scholar 

  15. Liberti SE, Andersen SD, Wang J et al (2011) Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks. DNA Repair (Amst) 10(1):73–86

    Article  CAS  Google Scholar 

  16. Holdgate GA (2001) Making cool drugs hot: isothermal titration calorimetry as a tool to study binding energetics. BioTechniques 31(1):164–170

    CAS  PubMed  Google Scholar 

  17. Krell T (2008) Microcalorimetry: a response to challenges in modern biotechnology. Microb Biotechnol 1(2):126–136

    Article  CAS  Google Scholar 

  18. Velazquez-Campoy A, Freire E (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protoc 1(1):186–191

    Article  CAS  Google Scholar 

  19. Asmari M, Ratih R, Alhazmi HA, El Deeb S (2018) Thermophoresis for characterizing biomolecular interaction. Methods 146:107–119

    Article  CAS  Google Scholar 

  20. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9(4):342–353

    Article  CAS  Google Scholar 

  21. Raynal B, Lenormand P, Baron B, Hoos S, England P (2014) Quality assessment and optimization of purified protein samples: why and how? Microb Cell Factories 13:180

    Article  Google Scholar 

  22. Myszka DG, Abdiche YN, Arisaka F et al (2003) The ABRF-MIRG'02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J Biomol Tech 14(4):247–269

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Czarny B, Stura EA, Devel L et al (2013) Molecular determinants of a selective matrix metalloprotease-12 inhibitor: insights from crystallography and thermodynamic studies. J Med Chem 56(3):1149–1159

    Article  CAS  Google Scholar 

  24. Dumas P, Ennifar E, Da Veiga C et al (2016) Extending ITC to kinetics with kinITC. Methods Enzymol 567:157–180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.B.C. is supported by ARC program (SLS220120605310), ANR (ANR-12-SVSE8-012), INCA DomRep (PLBIO 2012-280), and CEFIPRA grant 5203C and by the French Infrastructure for Integrated Structural Biology (FRISBI) (ANR-10-INBS-05). A.G. is supported by a CIFRE PhD fellowship with Sanofi. We thank Pierre Soule from Nanotemper Technologies for his availability and all the fruitful discussion. The experiments were performed on the Platform PIM (Platform for measurements of Interactions of Macromolecules) (https://www.i2bc.paris-saclay.fr/spip.php?article280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Charbonnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gontier, A. et al. (2021). Measurements of Protein–DNA Complexes Interactions by Isothermal Titration Calorimetry (ITC) and Microscale Thermophoresis (MST). In: Poterszman, A. (eds) Multiprotein Complexes. Methods in Molecular Biology, vol 2247. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1126-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1126-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1125-8

  • Online ISBN: 978-1-0716-1126-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics