Skip to main content

Extraction of Microbial Cells from Environmental Samples for FISH Approaches

  • Protocol
  • First Online:
Fluorescence In-Situ Hybridization (FISH) for Microbial Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

  • 1562 Accesses

Abstract

Fluorescent in situ hybridization (FISH) on environmental samples has become a standard technique to identify and enumerate microbial populations. However, visualization and quantification of cells in environmental samples with complex matrices is often challenging to impossible, and downstream protocols might also require the absence of organic and inorganic particles for analysis. Therefore, quite often microbial cells have to be detached and extracted from the sample matrix prior to use in FISH. Here, details are given for a routine protocol to extract intact microbial cells from environmental samples using density gradient centrifugation. This protocol is suitable and adaptable for a wide range of environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida C, Azevedo NF, Santos S et al (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6:e14786

    Article  CAS  Google Scholar 

  2. Lukumbuzya M, Schmid M, Pjevac P, Daims H (2019) A multicolor fluorescence in situ hybridization approach using an extended set of fluorophores to visualize microorganisms. Front Microbiol 10:1383

    Article  Google Scholar 

  3. Schmidt H, Eickhorst T (2013) Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in situ hybridization. FEMS Microbiol Ecol 87:390–402

    Article  Google Scholar 

  4. Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94

    Article  Google Scholar 

  5. Thimm T, Tebbe CC (2003) Protocol for rapid fluorescence in situ hybridization of bacteria in cryosections of microarthropods. Appl Environ Microbiol 69:2875–2878

    Article  CAS  Google Scholar 

  6. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433

    Article  CAS  Google Scholar 

  7. Yilmaz S, Haroon MF, Rabkin BA et al (2010) Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J 4:1352–1356

    Article  Google Scholar 

  8. Lindahl V, Bakken LR (1995) Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16:135–142

    Article  CAS  Google Scholar 

  9. Caracciolo AB, Grenni P, Cupo C, Rossetti S (2005) In situ analysis of native microbial communities in complex samples with high particulate loads. FEMS Microbiol Lett 253:55–58

    Article  Google Scholar 

  10. Deng L, Fiskal A, Han X et al (2019) Improving the accuracy of flow cytometric quantification of microbial populations in sediments: importance of cell staining procedures. Front Microbiol 10:720

    Article  Google Scholar 

  11. Pratscher J, Dumont MG, Conrad R (2011) Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ Microbiol 13:2692–2701

    Article  CAS  Google Scholar 

  12. Pratscher J, Vollmers J, Wiegand S et al (2018) Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ Microbiol 20:1016–1029

    Article  CAS  Google Scholar 

  13. Bertaux J, Gloger U, Schmid M et al (2007) Routine fluorescence in situ hybridization in soil. J Microbiol Methods 69:451–460

    Article  CAS  Google Scholar 

  14. Portillo MC, Leff JW, Lauber CL, Fierer N (2013) Cell size distributions of soil bacterial and archaeal taxa. Appl Environ Microbiol 79:7610–7617

    Article  CAS  Google Scholar 

  15. Shintani M, Matsui K, Inoue JI et al (2014) Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol 80:138–145

    Article  CAS  Google Scholar 

  16. Sánchez-Andrea I, Knittel K, Amann R et al (2012) Quantification of Tinto river sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl Environ Microbiol 78:4638–4645

    Article  Google Scholar 

  17. Frossard A, Hammes F, Gessner MO (2016) Flow cytometric assessment of bacterial abundance in soils, sediments and sludge. Front Microbiol 7:903

    Article  Google Scholar 

  18. Utturkar SM, Cude WN, Robeson MS Jr et al (2016) Enrichment of root endophytic bacteria from Populus deltoides and single-cell-genomics analysis. Appl Environ Microbiol 82:5698–5708

    Article  CAS  Google Scholar 

  19. Peris-Bondia F, Latorre A, Artacho A et al (2011) The active human gut microbiota differs from the total microbiota. PLoS One 6:e22448

    Article  CAS  Google Scholar 

  20. Hevia A, Delgado S, Margolles A, Sánchez B (2015) Application of density gradient for the isolation of the fecal microbial stool component and the potential use thereof. Sci Rep 5:16807

    Article  CAS  Google Scholar 

  21. Kleiner M, Wentrup C, Lott C et al (2012) Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci U S A 109:E1173–E1182

    Article  CAS  Google Scholar 

  22. Priemé A, Sitaula JIB, Klemedtsson ÅK, Bakken LR (1996) Extraction of methane-oxidizing bacteria from soil particles. FEMS Microbiol Ecol 21:59–68

    Article  Google Scholar 

  23. Amaral JA, Ren T, Knowles R (1998) Atmospheric methane consumption by forest soils and extracted bacteria at different pH values. Appl Environ Microbiol 64:2397–2402

    Article  CAS  Google Scholar 

  24. Holmsgaard PN, Norman A, Hede SC et al (2011) Bias in bacterial diversity as a result of Nycodenz extraction from bulk soil. Soil Biol Biochem 43:2152–2159

    CAS  Google Scholar 

  25. Clingenpeel S, Schwientek P, Hugenholtz P, Woyke T (2014) Effects of sample treatments on genome recovery via single-cell genomics. ISME J 8:2546–2549

    Article  CAS  Google Scholar 

Download references

Acknowledgement

JP was supported by a NERC Independent Research Fellowship (NE/L010771/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Pratscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pratscher, J. (2021). Extraction of Microbial Cells from Environmental Samples for FISH Approaches. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics