Skip to main content

Multiregion Sequence Analysis to Predict Intratumor Heterogeneity and Clonal Evolution

  • Protocol
  • First Online:
Deep Sequencing Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2243))

Abstract

Multiregion sequencing can advance our understanding of the intratumor heterogeneity and the clonal evolution. Here, we introduced multiple aspects of multiregion sequencing and its analysis, including the study design and sampling strategy, current understanding of the tumor evolution model, and a protocol for multiregion sequencing analysis of DNA-sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  CAS  PubMed  Google Scholar 

  2. Carter SL et al (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30(5):413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz R, Schaffer AA (2017) The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet 18(4):213–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jahn K et al (2016) Tree inference for single-cell data. Genome Biol 17:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tomlinson K, Oesper L (2019) Parameter, noise, and tree topology effects in tumor phylogeny inference. BMC Med Genomics 12(Suppl 10):184

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta RG, Somer RA (2017) Intratumor heterogeneity: novel approaches for resolving genomic architecture and clonal evolution. Mol Cancer Res 15(9):1127–1137

    Article  CAS  PubMed  Google Scholar 

  8. Yan T et al (2019) Multi-region sequencing unveils novel actionable targets and spatial heterogeneity in esophageal squamous cell carcinoma. Nat Commun 10(1):1670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ramazzotti D et al (2019) Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data. BMC Bioinformatics 20(1):210

    Article  PubMed  PubMed Central  Google Scholar 

  10. Malikic S et al (2019) Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. Nat Commun 10(1):2750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shi W et al (2018) Reliability of whole-exome sequencing for assessing intratumor genetic heterogeneity. Cell Rep 25(6):1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McDonough SJ et al (2019) Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods. PLoS One 14(4):e0211400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jamal-Hanjani M et al (2017) Tracking the evolution of non-small-cell lung cancer. N Engl J Med 376(22):2109–2121

    Article  CAS  PubMed  Google Scholar 

  14. Van Allen EM et al (2014) Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med 20(6):682–688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang J et al (2014) Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346(6206):256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weaver JMJ et al (2014) Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet 46(8):837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Damm F et al (2014) Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 4(9):1088–1101

    Article  CAS  PubMed  Google Scholar 

  18. Yu Y et al (2019) Genome-wide copy number variation analysis identified ANO1 as a novel oncogene and prognostic biomarker in esophageal squamous cell cancer. Carcinogenesis 40(10):1198–1208

    Article  CAS  PubMed  Google Scholar 

  19. Rennstam K et al (2003) Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res 63(24):8861–8868

    CAS  PubMed  Google Scholar 

  20. Han X et al (2019) Comprehensive profiling of gene copy number alterations predicts patient prognosis in resected stages I-III lung adenocarcinoma. Front Oncol 9:556

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luo F (2019) A systematic evaluation of copy number alterations detection methods on real SNP array and deep sequencing data. BMC Bioinformatics 20(Suppl 25):692

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hu Z, Curtis C (2016) Inferring tumor phylogenies from multi-region sequencing. Cell Syst 3(1):12–14

    Article  CAS  PubMed  Google Scholar 

  23. Beerenwinkel N et al (2015) Cancer evolution: mathematical models and computational inference. Syst Biol 64(1):e1–e25

    Article  CAS  PubMed  Google Scholar 

  24. Niida A et al (2018) Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling. Cancer Sci 109(4):884–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davis A et al (2017) Tumor evolution: linear, branching, neutral or punctuated? Biochim Biophys Acta Rev Cancer 1867(2):151–161

    Article  CAS  PubMed  Google Scholar 

  26. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13(11):795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sottoriva A et al (2015) A Big Bang model of human colorectal tumor growth. Nat Genet 47(3):209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ling S et al (2015) Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci U S A 112(47):E6496–E6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams MJ et al (2016) Identification of neutral tumor evolution across cancer types. Nat Genet 48(3):238–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fittall MW, Van Loo P (2019) Translating insights into tumor evolution to clinical practice: promises and challenges. Genome Med 11(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lindstrom HJG et al (2019) Stochastic modelling of tyrosine kinase inhibitor rotation therapy in chronic myeloid leukaemia. BMC Cancer 19(1):508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Landau DA et al (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152(4):714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papaemmanuil E et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122(22):3616–3627; quiz 3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alves JM et al (2017) Multiregional tumor trees are not phylogenies. Trends Cancer 3(8):546–550

    Article  PubMed  PubMed Central  Google Scholar 

  35. DiNardo Z et al (2019) Distance measures for tumor evolutionary trees. Bioinformatics

    Google Scholar 

  36. Roth A et al (2014) PyClone: statistical inference of clonal population structure in cancer. Nat Methods 11(4):396–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zare H et al (2014) Inferring clonal composition from multiple sections of a breast cancer. PLoS Comput Biol 10(7):e1003703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Popic V et al (2015) Fast and scalable inference of multi-sample cancer lineages. Genome Biol 16:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Malikic S et al (2015) Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31(9):1349–1356

    Article  CAS  PubMed  Google Scholar 

  40. Dang HX et al (2017) ClonEvol: clonal ordering and visualization in cancer sequencing. Ann Oncol 28(12):3076–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dentro SC et al (2017) Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb Perspect Med 7(8)

    Google Scholar 

  42. McGranahan N et al (2015) Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 7(283):283ra254

    Article  Google Scholar 

  43. Harismendy O et al (2011) Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing. Genome Biol 12(12):R124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant NRF-2015R1D1A1A02061597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahn, S., Huang, H. (2021). Multiregion Sequence Analysis to Predict Intratumor Heterogeneity and Clonal Evolution. In: Shomron, N. (eds) Deep Sequencing Data Analysis. Methods in Molecular Biology, vol 2243. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1103-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1103-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1102-9

  • Online ISBN: 978-1-0716-1103-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics