Skip to main content

Genome-Wide Noninvasive Prenatal Diagnosis of De Novo Mutations

  • Protocol
  • First Online:
Deep Sequencing Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2243))

Abstract

Noninvasive prenatal diagnosis (NIPD) has become a common, safe, and effective procedure for detection of inherited diseases early in pregnancy. It is based on the analysis of fetal cell-free DNA (cffDNA) derived from the placenta, circulating in the maternal plasma. De novo mutations, although rare, cause a considerable number of dominant genetic disorders. Due to the sparse representation of fetal-derived sequences in the blood, the challenge of detecting low frequency fetal de novo mutations becomes preponderant. Hence, this detection type requires deep genome-wide sequencing of cffDNA from maternal plasma and a unique analysis approach. Here we suggest and discuss a method for identifying de novo mutations based on whole genome sequencing (WGS) of cell-free DNA (cfDNA) from maternal plasma samples. Our method consists of an augmented pipeline for analysis of de novo mutation candidates. It begins with an enhanced noninvasive fetal variant calling step, followed by a candidate de novo mutation filtration, and then finally, a supervised machine learning approach is utilized for reduction of false positive rates. Overall, this study provides a basis for genome-wide de novo mutation analysis in NIPD procedures, which could be used in any procedure where rare de novo mutations should be carefully picked out of a sea of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conrad DF, Keebler JEM, DePristo MA et al (2011) Variation in genome-wide mutation rates within and between human families. Nat Genet 43:712–714. https://doi.org/10.1038/ng.862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Veltman JA, Brunner HG (2012) De novo mutations in human genetic disease. Nat Rev Genet 13:565–575. https://doi.org/10.1038/nrg3241

    Article  CAS  PubMed  Google Scholar 

  3. Hayward J, Chitty LS (2018) Beyond screening for chromosomal abnormalities: advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin Fetal Neonatal Med 23:94–101. https://doi.org/10.1016/j.siny.2017.12.002

    Article  PubMed  Google Scholar 

  4. Akolekar R, Beta J, Picciarelli G et al (2015) Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45:16–26. https://doi.org/10.1002/uog.14636

    Article  CAS  PubMed  Google Scholar 

  5. Tabor A, Alfirevic Z (2010) Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther 27:1–7. https://doi.org/10.1159/000271995

    Article  PubMed  Google Scholar 

  6. Lo YMD, Lun FMF, Chan KCA et al (2007) Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci 104:13116. https://doi.org/10.1073/pnas.0705765104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan HC, Blumenfeld YJ, Chitkara U et al (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci 105:16266. https://doi.org/10.1073/pnas.0808319105

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hill M, Compton C, Lewis C et al (2012) Determination of foetal sex in pregnancies at risk of haemophilia: a qualitative study exploring the clinical practices and attitudes of health professionals in the United Kingdom. Haemophilia 18:575–583. https://doi.org/10.1111/j.1365-2516.2011.02653.x

    Article  CAS  PubMed  Google Scholar 

  9. Lewis C, Hill M, Skirton H, Chitty LS (2012) Non-invasive prenatal diagnosis for fetal sex determination: benefits and disadvantages from the service users’ perspective. Eur J Hum Genet 20:1127–1133. https://doi.org/10.1038/ejhg.2012.50

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lam K-WG, Jiang P, Liao GJW et al (2012) Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to β-thalassemia. Clin Chem 58:1467–1475. https://doi.org/10.1373/clinchem.2012.189589

    Article  CAS  PubMed  Google Scholar 

  11. Chitty LS, Mason S, Barrett AN et al (2015) Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat Diagn 35:656–662. https://doi.org/10.1002/pd.4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rabinowitz T, Polsky A, Golan D et al (2019) Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res 29:428–438. https://doi.org/10.1101/gr.235796.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kitzman JO, Snyder MW, Ventura M et al (2012) Non-invasive whole genome sequencing of a human fetus. Sci Transl Med 4:137ra76. https://doi.org/10.1126/scitranslmed.3004323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan KCA, Jiang P, Sun K et al (2016) Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends. Proc Natl Acad Sci 113:E8159–E8168. https://doi.org/10.1073/pnas.1615800113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Li J, Saucier JB et al (2019) Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med 25:439–447. https://doi.org/10.1038/s41591-018-0334-x

    Article  CAS  PubMed  Google Scholar 

  16. DePristo MA, Banks E, Poplin RE et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Fallon BD, Wooderchak-Donahue W, Crockett DK (2013) A support vector machine for identification of single-nucleotide polymorphisms from next-generation sequencing data. Bioinformatics 29:1361–1366. https://doi.org/10.1093/bioinformatics/btt172

    Article  CAS  PubMed  Google Scholar 

  18. Yadong Wang YL (2014) A gradient-boosting approach for filtering de novo mutations in parent–offspring trios. Bioinformatics 30(13):1830–1836. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071207/. Accessed 4 Mar 2019

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wan N, Weinberg D, Liu T-Y et al (2018) Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. Cancer Biol

    Google Scholar 

  20. Ramu A, Noordam MJ, Schwartz RS et al (2013) DeNovoGear: de novo indel and point mutation discovery and phasing. Nat Methods 10:985–987. https://doi.org/10.1038/nmeth.2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashoor G, Syngelaki A, Poon LCY et al (2013) Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 41:26–32. https://doi.org/10.1002/uog.12331

    Article  CAS  PubMed  Google Scholar 

  22. Hu P, Liang D, Chen Y et al (2019) An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study. J Transl Med 17:124. https://doi.org/10.1186/s12967-019-1871-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sillence K (2016) Cell-free fetal DNA (cffDNA) enrichment for non-invasive prenatal testing (NIPT): a comparison of molecular techniques

    Google Scholar 

  24. Jorgez CJ, Bischoff FZ (2009) Improving enrichment of circulating fetal DNA for genetic testing: size fractionation followed by whole gene amplification. Fetal Diagn Ther 25:314–319. https://doi.org/10.1159/000235877

    Article  PubMed  PubMed Central  Google Scholar 

  25. Webb A, Madgett T, Miran T et al (2012) Non invasive prenatal diagnosis of aneuploidy: next generation sequencing or fetal DNA enrichment? Balk J Med Genet BJMG 15:17–26. https://doi.org/10.2478/v10034-012-0013-z

    Article  CAS  Google Scholar 

  26. Peng XL, Jiang P (2017) Bioinformatics approaches for fetal DNA fraction estimation in noninvasive prenatal testing. Int J Mol Sci 18:453. https://doi.org/10.3390/ijms18020453

    Article  CAS  PubMed Central  Google Scholar 

  27. Kong A, Frigge ML, Masson G et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475. https://doi.org/10.1038/nature11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnheim N, Calabrese P (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10:478–488. https://doi.org/10.1038/nrg2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shang J, Zhu F, Vongsangnak W et al (2014) Evaluation and comparison of multiple aligners for next-generation sequencing data analysis. Biomed Res Int 2014:1–16. https://www.hindawi.com/journals/bmri/2014/309650/abs/. Accessed 8 Jan 2020

    Article  Google Scholar 

  30. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Faust GG, Hall IM (2014) SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30:2503–2505. https://doi.org/10.1093/bioinformatics/btu314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarasov A, Vilella AJ, Cuppen E et al (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034. https://doi.org/10.1093/bioinformatics/btv098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garrison E (2012) freebayes: Bayesian haplotype-based genetic polymorphism discovery and genotyping

    Google Scholar 

  35. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buitinck L, Louppe G, Blondel M, et al (2013) API design for machine learning software: experiences from the scikit-learn project. ArXiv13090238 Cs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Shomron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peretz-Machluf, R., Rabinowitz, T., Shomron, N. (2021). Genome-Wide Noninvasive Prenatal Diagnosis of De Novo Mutations. In: Shomron, N. (eds) Deep Sequencing Data Analysis. Methods in Molecular Biology, vol 2243. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1103-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1103-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1102-9

  • Online ISBN: 978-1-0716-1103-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics